Inference and Performance Analysis of
Convolutional Neural Networks used for Human
Gesture Recognition on IoT-Devices

Bjorn Sievers*, Sebastian Hauschild" and Horst Hellbriick
Luebeck University of Applied Sciences, Germany
Department of Electrical Engineering and Computer Science
*Email: bjoern.sievers @stud.th-luebeck.de
TEmail: sebastian.hauschild, horst.hellbrueck @th-luebeck.de

Abstract—The steady growth in computing power of micro-
processors recently enabled the implementation of rudimentary
neural networks on these devices. This has drawn the focus of
scientists to this still a very unexplored topic. In this paper, we
investigate Convolutional Neural Networks implemented on a
microcontroller for the real-time classification of human gestures.
We examine the effects of the complexity of the neural network
on the inference time, classification accuracy, and energy demand.
The neural networks are trained and tested on a generated
dataset, which consists of 10 labeled gestures, generated from
a triaxial accelerometer. The neural networks are deployed
on the Adafruit Feather Bluefruit Sense board. This board
hosts the nrF52840 SoC which is built around a Cortex-M4F-
based microcontroller. The measurement results show that more
complex neural networks achieve higher accuracies, but involve
higher energy requirements and longer inference times.

Index Terms—Edge Computing, Convolution Neural Net-
work(CNN), Microcontroller

I. INTRODUCTION

The topic of Deep Learning (DL) in connection with the
Internet of Things (IoT) devices has gained a lot of attention
in recent years in the field of research as well as in the
commercial segment [1]. A contributing element is the ongoing
advancement of semiconductor technology and the associated
increase in the computational capabilities of microcontroller
units (MCUs). The increase in the performance of MCUs
in recent years has made it possible to integrate neural
networks (NNs) on resource-constrained end devices such as
smartphones or sensor systems. When the data processing
occurs close to or directly on the end device instead of
being forwarded to a cloud server, we refer to this as edge
computing [2], [3].

An implementation of NNs at or close to the end device
entails some advantages compared to conventional IT solutions.
Edge computing reduces the latency which enables inferences
(i.e., the evaluation of the sensor data) to be performed in
real-time. This is of major importance in some applications.
For example, the evaluation of camera data in autonomous
driving applications requires a minimal latency [3]. An
implementation close to the end device also increases the
scalability of the IoT sensor network, as the evaluation of the

data is directly performed on the node. This enables that just
the metadata and not the raw sensor data has to be transmitted
to the server, thus bandwidth-intensive data transmission
is reduced. Moreover, the privacy of the user is increased,
since valuable or personal data for the user is no longer
transmitted to a cloud server to be processed [2], [4]. Thus,
edge computing introduces some benefits, however, it still
faces some challenges in implementing neural networks on IoT
devices. Even though the computational power of MCUs has
increased in recent years it is still extremely limited compared
to cloud servers, desktop computers, Application-Specific
Integrated Circuits (ASICs), or Neural Processuing Units
(NPUs) [5]. Furthermore, MCU systems have limited memory
capacities. Typical MCU’s have a flash memory with a size of
1-2 MB and less than 1 MB of RAM available. Therefore,
the size of a neural network will be limited in terms of
the computational complexity of a neural network that is
implemented on a microcontroller. However, some applications
may require high energy efficiency, scalability, or need to
operate on a low budget. Therefore, in certain cases, the use
of microcontrollers is the desired solution [3].

In this paper, we focus on the investigation of deployed
Convolutional Neural Networks (CNNs) on a resource-
constrained microcontroller-based sensor system for real-time
recognition of hand gestures. We use CNNs for the
classification of human gestures based on sensory data. Human
gesture recognition is done by using sensory data from a
3-axis IMU in the form of an accelerometer. We train the
CNNs based on a training dataset consisting of up to 10
individual gestures. Our work focuses on the examination
of the model complexity and its effects on inference time,
accuracy and energy demand.

The paper is structured as follows. Section II starts with
the discussion of related work. Section III gives an overview
of the software libraries and the dataset used to build and
train the neural networks. We further provide information on
the hardware platform used to deploy and analyze the neural
networks in this Section. In Section IV, we present the archi-

tectures of the CNNs which will be deployed on our hardware
platform as well as the estimated floating-point operations
required per layer. In Section V, we analyze our deployed
CNNs with regards to accuracy metrics, inference time, and
energy demand. Section VI summarizes our conclusions.

II. RELATED WORK

In this research, time-series acceleration data is to be
classified into different gestures. A promising candidate is
the CNN since the use of CNNs to analyze time-series data
is widespread. It is typically used to classify speech signals
[6], natural language processing [7], images or objects inside
images [8] [9]. Typical neutral networks such as multilayer
perceptron neural networks (MLPs) are also used to classify
data. The advantage of using CNNs over to traditional MLPs
is that CNNs factor in spatial information of the input signal,
while typical MLPs are translation invariant. This typically
enables CNNs to achieve higher accuracies compared to MLPs
on this type of data [10]. Therefore, we concentrate on the
investigation of CNNs in this work.

Yuging Chen et. al. [11] investigated human activity recogni-
tion, using a CNN, based on raw tri-axial accelerometer sensor
data. In their experiment, their model achieved an average
accuracy of 93.8% based on a dataset consisting of eight
different activities to classify and approximately 32000 total
labeled samples. They show with this work that the use of
CNNs for the classification of time-series data, in their case
in the form of human activity recognition, is possible. The
CNN model of their work is designed for mobile devices, i.e.,
smartphones. However, processing units of a mobile device,
such as smartphones, exceed the available resource capacities
of a microcontroller system.

Juraj Dudak et. al. [12] proposed a CNN which is used for
the classification of six different motion patterns by using tri-
axial accelerometer data. Their network achieved an accuracy
of 88 % and is deployed on a microcontroller. However, the
focus of their work lies in the implementation process of
the CNN on an STM321L.432 MCU. Furthermore, in their
application, a completely new sampling batch is acquired before
a classification is performed. It is not explicitly stated how
long the CNN needs for the inference. In case a real-time
system is required, too long inference times may cause that
data points can not be sampled in time, and thus information
of the process is lost.

Warden et. al. [13] proposed in their work a CNN model
that is implemented on a microcontroller for the classification
of human gestures based on raw tri-axial accelerometer data.
Their model distinguishes between 4 different gestures with
an accuracy of 93.2%. Their work, however, focuses on
the construction process and generally shows that CNNs are
implementable on microcontrollers, but they do not elaborate
on the resource demands of this network on the microcontroller.

We have adopted the basic idea of human gesture recognition
from [13] and conduct further research on the subject. We
explore how a change in the number of sequential convolutional
layers (i.e., the depth of the network) affects the accuracy of the

classification and the average inference time required. We also
use up to 10 gestures in our work to research how the individual
neural networks behave in terms of their classification accuracy
as classification complexity increases. We further explore the
energy consumption of the neural networks on our test hardware
platform that is required per inference.

III. MATERIALS AND METHODS

In this section, we discuss the software tools used for the
implementation of the neural networks on the microcontroller.
Next, we describe the hardware used and its specifications,
on which we implemented the neural networks. Finally, we
present the process applied to obtain the dataset to train the
neural networks.

A. Software Tools

We use the open-source library Tensorflow [14], developed
and introduced by Google, as backend in combination with
Keras [15] to build and train neural networks. The Tensor-
flow library has an experimental module “TensorFlow Lite”
which enables the conversion of standard Tensorflow neural
network models into neural network models optimized for the
deployment on microcontroller systems.

B. Hardware Platform

We inspect the behavior of CNNs on the target hardware
platform Adafruit Feather Bluefruit Sense. This microcontroller
board implements an nRF52840 SoC from Nordic Semicon-
ductor. The SoC is built around an ARM Cortex-M4 CPU with
64MHz clock frequency and has a 32-bit floating-point unit.
Additionally, the microcontroller comes with 1 MB flash, and
256 KB SRAM memory.

C. Dataset

To train and evaluate the designed CNNs models we recorded
acceleration data of 10 different gestures from 5 volunteers.
The individual gestures to be classified by the CNN are shown
in Figure 1. We used the "LSM6DS33” tri-axial accelerometer,
which is embedded on the ”Adafruit Feather Bluefruit Sense”,
to record the gestures. We instructed our test subjects to
hold the recording device in a stationary position, for a small
period, before and after performing the gesture. The purpose
of this is to minimize the introduction of incorrect data points
into the dataset. The gestures were recorded with a sampling
frequency of 26 Hz and a measurement range of 4G, where
1G = 9.817*. Approximately 400 individual labeled samples
were recorded per gesture. In addition to the 10 recorded and
predefined gestures, we have acquired data in which movements
have been performed that are not associated with any predefined
gesture. This sensor data is used to allow the CNNs to classify
for an “unknown” gesture. Thus if, for example, no movements
are executed while running the neural network, the neural
network will classify this as an unknown gesture.

We divided the recorded raw data into a training dataset,
validation dataset and a test dataset with a split of 60 %, 20 %
and 20 % per gesture respectively. After splitting the recorded

> (A0
M8 ES

5 6

Fig. 1: List of gestures which are represented in the dataset

raw date we applied the script used in[13] for processing
and synthetic dataset expansion. This script applies padding
(i.e., a necessary generated number of data points is appended
to the beginning or the end of a time series.) to convert the
raw sensor data of the gestures to a common data length
of 128 samples per gesture. With the used sampling rate of
26Hz this corresponds to a length of 4.92 seconds per gesture.
Furthermore, in this script, the dataset for training the CNNs
is artificially extended by augmentation to generate more
data for training the CNN models. The data is artificially
augmented by adding random noise, amplifying the signal,
warping it in time and by slightly changing the signals offset.
After the data has been preprocessed the training dataset
consists of 68925 samples. The validation and test dataset
hold 918 and 922 samples, respectively.

IV.

In this section, we describe the architectures of the evaluated
CNNs and estimate the contributing complexity of each layer
and the corresponding total complexity of the CNNss.

INVESTIGATED NEURAL NETWORK STRUCTURES

A. Architectures

We focus on the research of convolutional neural networks.
We decided to research four different convolutional neural
network architectures (Conv2, Conv3, Conv4, and Conv5). A
detailed overview for each individual architecture is given in
Table I, Table II, Table III, and Table IV. The Filters @Kernel
size/stride column for convolutional layer or max-pooling layer
indicates the number of filters applied, the filter kernel size, and
with which stride size the filter is moved over the input signal,
respectively. For a more general overview of the architecture
of the convolutional neural networks, a visual representation
of the Conv3 network is shown in Figure 2. In general, all
architectures follow the same classical CNN format structure
with the exception that the amount of sequential convolutional
layers and max-pooling layers changes. The layer count of the
networks is increased to investigate the impact of the increasing
complexity of the neural networks on the inference time and
the overall performance.

The input of all CNN’s consists of a 128x3 long time
sequence consisting of the =, y, z components of the accelerom-
eter sensor data. All CNN’s are joined by two fully-connected
layers after the convolution layers for high-level reasoning. The

first fully-connected layer consists of 16 neurons and the last
layer consists of 2 up to 11 neurons, depending on the desired
number of training gestures. The softmax function is utilized
for classification in the last fully-connected layer.

TABLE I: Conv2 architecture: Consists of two convolutional
layers each followed by a max-pooling layer.

Filters Output

Type @ Kernel size / stride Size Parameters FLOPs
Input - 1@128x3 - -
1 Convolution 8@4x3x1 /1 8@128x3 104 76.80k
2 Max pooling 3x3/3 8@42x3 - 3.02k
3 Convolution 16@3x1x1 /1 16@42x1 400 32.93k
4 Max pooling 3x1/3 16@14x1 - 0.67k
5 FC 16 neurons 16 3600 7.18k
6 FC + Softmax n neurons n (16+1)n 32-n+n
S 4104 120.60k
um +(16+1)n +32-n+n

TABLE II: Conv3 architecture: Consists of three convolutional
layers each followed by a max-pooling layer.

Filters Output
Type © Kernel size / stride Sige Parameters FLOPs
Input - 1@128x3 - -
1 Convolution 8@4x3x1 /1 8@128x3 104 76.80k
2 Max pooling 3x3/3 8@42x3 - 3.02k
3 Convolution 16@3x1x1 /1 16@42x1 400 32.93k
4 Max pooling 3x1/3 16@14x1 - 0.67k
5 Convolution 16@3x1x1 /1 16@14x1 784 21.73k
6 Max pooling 3x1/3 16@5x1 0.24k
7 FC 16 neurons 16 1296 2.58k
8 FC + Softmax n neurons n (16+1)n 32-n+n
Sum 2584 137.97k
+(16+1)-n +32-n+n

TABLE III: Conv4 architecture: Consists of four convolutional
layers each followed by a max-pooling layer.

Filters Output

Type @ Kernel size / stride Sige Lrameters FLOPs
Input - 1@128x3 - -
1 Convolution 8@4x3x1 /1 8@128x3 104 76.80k
2 Max pooling 3x3/3 8@42x3 - 3.02k
3 Convolution 16@3x1x1 /1 16@42x1 400 32.93k
4 Max pooling 3x1/1 16@14x1 - 0.67k
5 Convolution 16@3x1x1 /1 16@14x1 784 21.73k
6 Max pooling 3x1/1 16@5x1 - 0.24k
7 Convolution 16@3x1x1 /1 16@5x1 784 7.76k
8 Max pooling 3x1/1 l6@2x1 - 0.10k
9 FC 16 neurons 16 528 1.04k
10 FC + Softmax n neurons n (16+1)n 32-n+n
Sum 2600 144.29k
+(16+1)-n +32-n+n

TABLE IV: Conv5 architecture: Consists of five convolutional
layers each followed by a max-pooling layer.

Filters Output

Type @ Kernel size / stride Size Parameters FLOPs
Input - 1@128x3 - -
1 Convolution 8@4x3x1 /1 8@128x3 104 76.80k
2 Max pooling 3x3/3 8@42x3 - 3.02k
3 Convolution l6@3x1x1 /1 16@42x1 400 32.93k
4 Max pooling 3x1/1 16@14x1 - 0.67k
5 Convolution l6@3x1x1 /1 16@14x1 784 21.73k
6 Max pooling 3x1/1 16@5x1 - 0.24k
7 Convolution 16@3x1x1 /1 16@5x1 784 7.76k
8 Max pooling 3x1/1 lo@2x1 - 0.10k
9 Convolution 16@3x1x1 /1 16@2x1 784 3.10k
10 Max pooling 2x1 /1 16@1x1 - 0.03k
11 FC 16 neurons 16 272 0.53k
12 FC + Softmax n neurons n (16+1)n 32-n+n
Sum 3128 146.91k
+(16+1)n +32-n+n

Feature Feature Feature Feature

Feature

Feature Hidden

Inputs maps maps maps maps maps maps Units Outputs
1l@128x3 8@128x3 s@42x1 16@42xl 16@14x1 16@l4x1 16@5x1 16 11
‘ m‘”l“l“l / I I Fully Fully
Convoelution Max-Pooling
“ 1 3x1 kernel 3x1 kernel Connected Connected
I" Max-Pooling
3x1 kernel
| —

Convolution
3x1 kernel

Max-Pooling
- 3x3 kernel
Convolution

4x3 kernel

Fig. 2: Model illustration of the structure of a Convolutional Neural Network based on the selected 3-Conv layer architecture.

B. Computational Complexity

In literature, the number of floating-point operations (FLOPs)
per executed inference is determined to indicate the computa-
tional complexity of neural networks. It is only an estimation
since non-linear effects during operation of the CNNs are not
considered and hard to model. Our proposed neural networks
consist of several convolutional layers, max-pooling layers,
and fully connected layers. The estimated FLOPs for these
layers are determined by the following equations. Equation
1 and Equation 2 are applied to determine the FLOPs for a
convolutional layer and max-pooling layer, respectively.

FLOPSCNN = 2kaWCinCoutHinWin + Hout outcout (1)

FLOPSMaacPool = kaWHout out Cout (2)

Where kg and ky, describe the size of the used filter kernel
in height and width, respectively. C},, describes the number of
feature maps of the input signal into the Conv layer and Cy,;
the number of feature maps after passing through the Conv
layer. H and W describe the height and width of the feature
maps. From Equation 1, it is observed that the complexity of
the convolutional layer depends on kernel size, the number of
input and output feature maps, and the input size of the feature
maps. Equation 3 below is applied to calculate the required
FLOPs when a fully connected layer is used.

FLOPSF‘ullyConnected = 2Nin Nouwt + Nout (3)

Where N, corresponds to the number of neurons of the
layer before the fully-connected layer and N,,; corresponds
to the number of neurons of the fully-connected layer [16].

V. RESULTS AND DISCUSSION

In this section, we evaluate our proposed architectures
from Section IV. First, we analyze the accuracy of the CNNs
when the classification task complexity is iteratively increased
followed by a comparison of the CNNs performance when
trained with the entire dataset. Secondly, we investigate the
inference time of the CNNs. Lastly, we evaluate the energy
consumption of each CNN.

A. Accuracy

We studied the neural networks in terms of their classification
accuracy, looking at two aspects. First, during the training
process of the CNNs, we increased the number of gestures
to be classified in the dataset and observed the effect on the
accuracy of the CNNs with an increasing number of gestures to
be classified. In the second study, we compared the CNNs that
were trained with the trained entire dataset (10+1 gestures) by
observing the accuracy, precision, recall, and F1-Score metrics
of each CNN. The performance metrics we decided to apply
to evaluate the CNNs are determined as follows [17]:

Accuracy = TP ;}i j_ 5?{7 TN 100% “)
Precision; = % 100% 5)
AvgPrecision = 1 i Precision; - 100% (6)

i=0
Recall; = % 100% @)
AvgRecall = % izn; Recall; - 100% ®)
FlScore — 2 - AvgRecall - AvgPrecision 100% (9)

AvgRecall + AvgPrecision -

where 7 represents one kind of gesture to classify. TP,
TN, FP, and FN represent the amount of true positives, true
negatives, false positives, and false negatives, respectively.
Precision expresses the ratio of data points that a NN predicts
to be relevant and that were actually relevant. Whereas recall
is applied to assess the ability of a NN to identify all relevant
cases within a data set. The F1-Score is the harmonic mean
resulting from the average recall and average precision values.
Accuracy is applied to describe how good a model performed
in general correctly identifying a gesture out of the complete
dataset.

Figure 3 shows the results of the experiment on the accuracy
behavior of the four CNNs with increasing classification
complexity. It shows that the CNNs have relatively consistent

accuracies when classifying up to 7 gestures to a large extent.

As soon as 8 or more gestures are classified, a significant
performance degradation of the Conv2 layer in accuracy is
seen, while the other CNNs continue to achieve relatively
constant and high accuracies.

CNN Network Accuracy vs. Amount of Gestures
19===----.lu""."";: :

ea,

..!:::szﬁnnmu:=:3-...-..;.....3,..,_,6
°

Accuracy
o =2 o o
IS o o =

o
o

=@ CNN with 2 Conv Layers
0.2] | @ CNN with 3 Conv Layers H .0

. CNN with 4 Conv Layers ER e
=@ CNN with 5 Conv Layers o

0.1q 2 3 1 5 6 7 8 9 10
Gestures

Fig. 3: Accuracy vs. Gesture amount to be classified

The performance of the CNNs when trained on the full
dataset is shown in Table V. It also shows that the Conv2
network yields inadequate results in all areas of the selected
performance metrics. Comparing the other three CNNj, it
can be seen that with a higher depth of the network, i.e., a
higher complexity, the performance marginally increases in all
domains.

TABLE V: Classification performance results of CNN models
when trained with complete dataset

Network | Precision Recall F1 Score Accuracy
Conv2 12.4 % 18.0 % 14.7 % 20.7 %
Conv3 94.8 % 94.9 % 94.8 % 94.6 %
Conv4 95.3% 95.7 % 95.5 % 95.2 %
Conv5 95.6 % 96.2 % 95.9 % 95.6 %

Comparing the Conv3 network with the Conv5 network
complexity shown in Table II and Table 1V, it can be said that
a 1% increase in accuracy was achieved by a 6.48 % increase
in computational complexity with respect to required FLOPs
per inference. Signs of saturation of the CNNs accuracy may
be observed.

These observations show that rudimentary CNNs can be
used to classify human gestures. However, it also shows that
if CNNs are kept too rudimentary or optimized with respect
to low computational complexity, high accuracies may not be
achieved.

B. Inference Time

Next, we measured how the inference time of CNNs are
affected when the CNN architecture is increasing in depth and
thus in complexity. We have defined the gesture recognition
application as a real-time application. Since the neural networks
were trained with 26 Hz training data, the hyperperiod of the
system on the microcontroller was defined to be 38.46 ms.
This corresponds to 26 hyperperiods per second. To meet the
real-time requirements, the required computing time of the
individual task within a period must not exceed the defined
hyperperiod. We determined the required computation time of
the MCU for each task using timestamps. The measured results
are presented in Figure 4. In Figure 4, it is observable that the
inference in each network requires the most computing time
within a hyperperiod. This highlights yet again the high resource
demands of neural networks and the associated challenges of
implementing them in resource-limited systems for real-time
applications. However, all deployed networks were able to
meet the given constraints so that no other processes would
get affected or the defined real-time hyperperiod was exceeded
by the set of tasks. Furthermore, based on Figure 4, it is
evident that the inference time required by the CNNs increases
approximately proportionally with the increase in complexity.
For better understanding, we show this observation in Figure
5. It behaves, as aforementioned, approximately proportional,
since during the inference process on the microcontrollers non-
linear effects occur that are difficult to model. These effects are
for example caching of results in RAM or loading of weights
from the program memory.

CNN Network Latency

Hyperperiod :

Conv2 1

Conv3 3.7

o
B
I I I

Conv4 24

Conv5 2.19

mmm Sampling & Provisioning
I Inference Time

mm Others

Cldle

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Latency/ms

Fig. 4: Bar plot: Total latency time of one classification cycle.

We further observed the change in inference time for each
CNN when the amount of gestures to be classified is increased.
From Table I, Table II, Table III, and Table IV, we observe
that the fully-connected layers contribute a minor proportion
to the overall computational complexity of the CNNs. The
last fully-connected layer is kept variable in the number of
neurons and thus the number of gestures to be classified. For

CNN Network Inference Time vs. Complexity
34 T T T T T T T T T T

33F

[}
)
o

Inference Time/ms
w
Do

w
—
o

p ~ Conv2

31r Conv3 | |
. ‘onv4

“onv5

»®
30920 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150
Complexity/kFLOPs

Fig. 5: Inference Time vs. Complexity of Neural Network

this layer, the amount of FLOPs increases linearly with the
number of neurons. The measurement of the inference time
shows that the increase in the number of neurons also results in
an almost linear increase in the required computation time. The
measured inference time of the Conv3 network, for example,
with two neurons in the output layer required 32.50 ms while the
same network with eleven neurons in the output layer required
32.60 ms. Thus, the difference between these two configurations
is almost negligible compared to the computational complexity
of the other network layers. This behavior was also observed
for the other network configurations with great similarity and
may be seen in Figure 6.

CNN Network Inference Time vs. Amount of Gestures

9]
o
ot

w
[
T

Inference Time/ms _
w =
— ot
" 4

99

=

13
T

w
o
T

e CoNV2
s Conv3

Conv4
s Conv5

)

©

o
T

™)
R=)
-

2 3 1 5 6 7 8 9 10
Gestures

Fig. 6: Inference Time vs. amount of gestures to be classified

C. Energy Consumption

We estimated the average energy demand of the neural
networks by measuring the average power consumption of
the neural networks. For this purpose, we switched off other

processes such as the data acquisition in the program except the
inference process of the neutral network. The resulting program
runs in a continuous loop with a CNN inferring on pseudo
data. We did this to ensure direct comparability of the neural
networks, as inequalities may occur due to different idle times.
A power consumption of P,.,,; = 52.6 mWW was measured
for all four neural networks, when performing inferences in
a continuous mode. From this, the average required power
demand per hyperperiod can be estimated as follows:

1 tinference
/ Pcont dt
0

thype'rpe'riod

Povg = (10)

where tip ference 15 the required inference time of the neural
network. It has to be mentioned, we assume an ideal sampling
process and idle state in this estimation. This means that
additional processes do not require any additional energy in
the system.

TABLE VI: Power requirements of each CNN over one
hyperperiod

Average Power Average Inference
Network | " p (mW] Time t [ms]
Conv2 41.88 30.62
Conv3 44.59 32.60
Conv4 45.53 33.29
Conv5 45.90 33.56

From Table VI, as instinctively expected, longer inference
times require higher average power demands due to the
increased computational complexity of the CNNs. Thus, this
points out that the implementation of neural networks intro-
duces a compromise between accuracy and power consumption
since more complex networks have longer inference times and,
thus, the microcontroller is not able to spend long periods in
IDLE states.

VI. CONCLUSION AND FUTURE WORK

We have shown that the deployment of neural networks on
microcontrollers involves trade-offs. For higher accuracies, a
more complex network is needed, resulting in longer inference
times. Increased inference times result in higher energy demand
of the microcontroller system and thus lower battery runtimes
when the IoT device is powered by batteries. If the focus of
the application is more on the energy demand of the system,
the inference times ought to be kept shorter. However, this can
lead to a reduction in the accuracy of the application, since
the neural network’s complexity might be reduced to reach
desired systems specifications.

In a future study it would be of interest to find out how
much and to what degree exceeding the inference time to the
desired sampling rate affects the accuracy of the classification.

Furthermore, during our research, we maintained the hyper-
parameters of the convolutional layers almost the same in each
network. From equation 1 it may be seen that, for example,
changing the kernel size of the filters or the number of filter
maps will affect the number of FLOPs required per inference.
Future studies have to investigate how the variation of these

parameters affects the performance of the CNNs as opposed
to changing the “depth” of the network.

ACKNOWLEDGMENTS

This publication is a result of the research of the Center of
Excellence CoSA and funded by the Joachim Herz Foundation
(Project: PASBADIA). Horst Hellbriick is adjunct professor at
the Institute of Telematics of University of Liibeck.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

REFERENCES

M. Mohammadi, A. Al-Fugaha, S. Sorour, and M.
Guizani, “Deep learning for IoT big data and streaming
analytics: A survey,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 4, pp. 2923-2960, 2018. DOI:
10.1109/comst.2018.2844341.

J. Chen and X. Ran, “Deep learning with edge comput-
ing: A review,” Proceedings of the IEEE, vol. 107, no. 8§,
pp- 1655-1674, 2019. pot: 10.1109/jproc.2019.2921977.
W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge
computing: Vision and challenges,” IEEE Internet of
Things Journal, vol. 3, no. 5, pp. 637-646, Oct. 2016.
DOI: 10.1109/ji0t.2016.2579198.

G. Premsankar, M. D. Francesco, and T. Taleb, “Edge
computing for the internet of things: A case study,” [EEE
Internet of Things Journal, vol. 5, no. 2, pp. 1275-1284,
Apr. 2018. DOI: 10.1109/ji0t.2018.2805263.

M. Capra, B. Bussolino, A. Marchisio, M. Shafique,
G. Masera, and M. Martina, “An updated survey of
efficient hardware architectures for accelerating deep
convolutional neural networks,” Future Internet, vol. 12,
no. 7, 2020, 1SSN: 1999-5903. por: 10.3390/fi112070113.
[Online]. Available: https://www.mdpi.com/1999 -
5903/12/7/113.

D. Palaz, M. Magimai.-Doss, and R. Collobert, “Con-
volutional neural networks-based continuous speech
recognition using raw speech signal,” in 2015 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2015, pp. 4295-4299. por:
10.1109/ICASSP.2015.7178781.

T. Young, D. Hazarika, S. Poria, and E. Cambria,
Recent trends in deep learning based natural language
processing, 2018. arXiv: 1708.02709 [cs.CL].

A. Krizhevsky, 1. Sutskever, and G. Hinton, “Imagenet
classification with deep convolutional neural networks,”
Neural Information Processing Systems, vol. 25, Jan.
2012. por: 10.1145/3065386.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You
only look once: Unified, real-time object detection, 2016.
arXiv: 1506.02640 [cs.CV].

P. E. Novac, A. Castagnetti, A. Russo, B. Miramond,
A. Pegatoquet, F. Verdier, and A. Castagnetti, “Toward
unsupervised human activity recognition on microcon-
troller units,” in 2020 23rd Euromicro Conference on
Digital System Design (DSD), 2020, pp. 542-550. DOTI:
10.1109/DSD51259.2020.00090.

[11]

[12]

[13]

Y. Chen and Y. Xue, “A deep learning approach to hu-
man activity recognition based on single accelerometer,”
in 2015 IEEE International Conference on Systems, Man,
and Cybernetics, 2015, pp. 1488-1492. por: 10.1109/
SMC.2015.263.

J. Dudak, M. Kebisek, G. Gaspar, and P. Fabo, “Imple-
mentation of machine learning algorithm in embedded
devices,” in 2020 19th International Conference on
Mechatronics - Mechatronika (ME), 2020, pp. 1-6. DOI:
10.1109/ME49197.2020.9286705.

P. Warden and D. Situanayake, TinyML. Dec. 2019,
ch. Chapter 11,12, pp. 279-354, 1SBN: 9781492052043.
[Online]. Available: https://www.oreilly.com/library/
view/tinyml/9781492052036/ (visited on 12/29/2020).
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, and G. S. C. et. al, TensorFlow: Large-scale
machine learning on heterogeneous systems, Software
available from tensorflow.org, 2015. [Online]. Available:
https://www.tensorflow.org/.

F. Chollet et al., Keras, https://keras.io, 2015.

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz,
“Pruning convolutional neural networks for resource
efficient transfer learning,” CoRR, vol. abs/1611.06440,
2016. arXiv: 1611.06440. [Online]. Available: http:
//arxiv.org/abs/1611.06440.

C. T. Yen, J. X. Liao, and Y. K. Huang, “Human daily
activity recognition performed using wearable inertial
sensors combined with deep learning algorithms,” IEEE
Access, vol. 8, pp. 174 105-174 114, 2020. por1: 10.1109/
ACCESS.2020.3025938.

