

# Der Einfluss von Wandrauheiten in Mikroströmungen

H. Herwig D. Gloss

Institut für Thermofluiddynamik Technische Universität Hamburg-Harburg

# Mikroströmungen

Dimensionsbehaftet:

# Mikroströmungen

Dimensionsbehaftet:

$$\frac{n_{\text{max}} = 10 \dots 100 \, \mu\text{m}}{u_{\text{max}} = 0,01 \dots 1 \, \text{m/s}}$$

Dimensionslos:

# Mikroströmungen

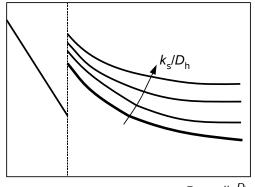
• Dimensionsbehaftet:

$$\frac{n_{\text{max}} = 10 \dots 100 \, \mu\text{m}}{u_{\text{max}} = 0,01 \dots 1 \, \text{m/s}}$$

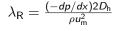
Dimensionslos:

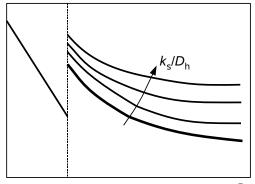


$$\lambda_{\mathsf{R}} = rac{(-dp/dx)2D_{\mathsf{h}}}{
ho u_{\mathsf{m}}^2}$$



 $Re = \frac{u_m D_h}{\nu}$ 

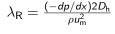


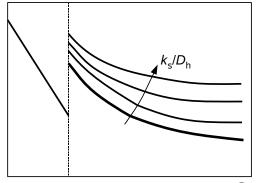


 $Re = \frac{u_m D_h}{\nu}$ 

#### Lehrbuch-Aussage:

Für laminare Strömungen ist der Druckverlust unabhängig von der Rauheitshöhe  $k_{\rm s}/D_{\rm h}$ .





 $Re = \frac{u_m D_h}{\nu}$ 

#### Lehrbuch-Aussage:

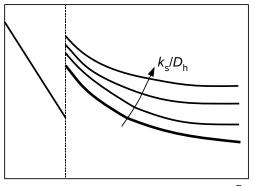
Für laminare Strömungen ist der

<u>Druckverlust</u> unabhängig von der Rauheitshöhe  $k_s/D_h$ .

unpräzise

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

$$\lambda_{\mathsf{R}} = \frac{(-dp/dx)2D_{\mathsf{h}}}{\rho u_{\mathsf{m}}^2}$$



 $Re = \frac{u_m D_h}{\nu}$ 

#### Lehrbuch-Aussage:

Für laminare Strömungen ist der

<u>Druckverlust</u> unabhängig von der Rauheitshöhe  $k_s/D_h$ .

unpräzise

falsch

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕久で

Reibungszahl: 
$$\lambda_{\mathsf{R}} = \lambda_{\mathsf{R}} \left( \frac{u_{\mathsf{m}} D_{\mathsf{h}}}{\nu}, \frac{k}{D_{\mathsf{h}}} \right)$$

Reibungszahl: 
$$\lambda_{\mathsf{R}} = \lambda_{\mathsf{R}} \left( \frac{u_{\mathsf{m}} D_{\mathsf{h}}}{\nu}, \frac{k}{D_{\mathsf{h}}} \right)$$

(1)  $\lambda_R$ : Wie sollte  $\lambda_R$  definiert sein?

Reibungszahl: 
$$\lambda_{\mathsf{R}} = \lambda_{\mathsf{R}} \left( \frac{\mathit{u}_{\mathsf{m}} \mathit{D}_{\mathsf{h}}}{\mathit{\nu}}, \ \frac{\mathit{k}}{\mathit{D}_{\mathsf{h}}} \right)$$

- (1)  $\lambda_R$ : Wie sollte  $\lambda_R$  definiert sein?
- (2)  $D_h$ : Wo ist die Wand?

Reibungszahl: 
$$\lambda_{\mathsf{R}} = \lambda_{\mathsf{R}} \left( \frac{\mathit{u}_{\mathsf{m}} \mathit{D}_{\mathsf{h}}}{\mathit{\nu}}, \ \frac{\mathit{k}}{\mathit{D}_{\mathsf{h}}} \right)$$

- (1)  $\lambda_R$ : Wie sollte  $\lambda_R$  definiert sein?
- (2)  $D_h$ : Wo ist die Wand?
- (3) k: Was genau ist die Rauheitshöhe k?

 $\lambda_{\mathsf{R}} \widehat{=} \mathsf{Reibungsbeiwert}$ 

 $\lambda_{\mathsf{R}} \widehat{=} \mathsf{Reibungsbeiwert}$ 



 $spezifische \ Dissipation \ mechanischer \ Energie \ pro \ L\"{a}nge$ 

 $\lambda_{\mathsf{R}} \widehat{=} \mathsf{Reibungsbeiwert}$ 



spezifische Dissipation mechanischer Energie pro Länge



 $\lambda_{\mathsf{R}} \widehat{=} \mathsf{Reibungsbeiwert}$ 



spezifische Dissipation mechanischer Energie pro Länge



$$\lambda_{\rm R} \equiv \frac{d\varphi}{dx} \frac{2D_{\rm h}}{u_{\rm m}^2} \qquad \text{(allgemeine Definition)}$$

 $\lambda_{\mathsf{R}} \widehat{=} \mathsf{Reibungsbeiwert}$ 



spezifische Dissipation mechanischer Energie pro Länge

$$\frac{\varphi}{L_{12}} \text{ or } \frac{d\varphi}{dx}$$

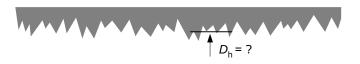
$$V V V$$

$$\lambda_{R} \equiv \frac{d\varphi}{dx} \frac{2D_{h}}{u_{m}^{2}} \quad \text{(allgemeine Definition)}$$

$$V V V$$

$$\Delta_{R} = -\frac{dp}{2} \frac{2D_{h}}{a} = \frac{8\tau_{w}}{a} \quad \text{(ausgebildet, horizontal)}$$

$$\lambda_{\rm R} = -\frac{dp}{dx}\frac{2D_{\rm h}}{\rho u_{\rm m}^2} = \frac{8\tau_{\rm w}}{\rho u_{\rm m}^2} \quad \text{(ausgebildet, horizontal)}$$





Antwort: Die Wand ist wo sie ist - und es ist eine raue Wand!



Antwort: Die Wand ist wo sie ist - und es ist eine raue Wand ! Eigentliche Frage: Wo ist die Wand eines äquivalenten glatten Kanals ?



Antwort: Die Wand ist wo sie ist - und es ist eine raue Wand ! Eigentliche Frage: Wo ist die Wand eines äquivalenten glatten Kanals ?

Antwort: Das hängt vom Äquivalenz-Kriterium ab!



Antwort: Die Wand ist wo sie ist - und es ist eine raue Wand ! Eigentliche Frage: Wo ist die Wand eines äquivalenten glatten Kanals ?

Antwort: Das hängt vom Äquivalenz-Kriterium ab!

mehrere

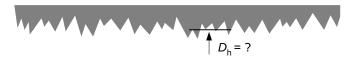
• ..

Möglichkeiten:

$$D_{
m h}$$
 so, dass  $V_{
m rau} = V_{
m glatt}$ 

• ..

## Wo ist die Wand?



Antwort: Die Wand ist wo sie ist - und es ist eine raue Wand! Eigentliche Frage: Wo ist die Wand eines äquivalenten glatten Kanals?

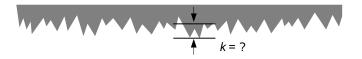
Antwort: Das hängt vom Äquivalenz-Kriterium ab!

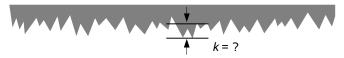
mehrere

Möglichkeiten: • 
$$D_{\rm h}$$
 so, dass  $V_{\rm rau} = V_{\rm glatt}$ 

Vorteile:

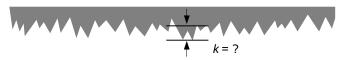
- V<sub>rau</sub> kann gemessen werden
- $u_{\rm m}$  bleibt für einen bestimmten Massenstrom  $\dot{m}$ erhalten, da  $u_{\rm m} = \dot{m} L_{12}/\rho V$





mehrere Möglichkeiten:

- . . . .
- k als Standard-Rauheit k<sub>s</sub> (vorzugsweise: Nikuradses Sandrauheit)
- ..



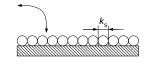
mehrere Möglichkeiten:

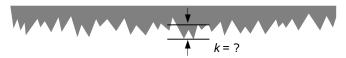
- ...
- k als Standard-Rauheit k<sub>s</sub> (vorzugsweise: Nikuradses Sandrauheit)
- ...

#### Problem: Korrespondenztafel erforderlich



| Korr                         | espon | denztafel    |    |
|------------------------------|-------|--------------|----|
| Material ເ<br>beschaffenheit |       | Oberflächen- | ks |
| :                            |       |              | :  |





mehrere Möglichkeiten:

• ...

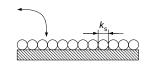
 k als Standard-Rauheit k<sub>s</sub> (vorzugsweise: Nikuradses Sandrauheit)

• ...

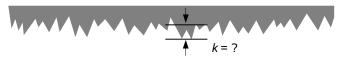
#### Problem: Korrespondenztafel erforderlich



| Korrespondenztafel             |              |                |  |
|--------------------------------|--------------|----------------|--|
| Material und<br>beschaffenheit | Oberflächen- | k <sub>S</sub> |  |
| :                              |              | :              |  |



bisher: Experimentelle Bestimmung der Korrespondenztafel (Nikuradse)



mehrere Möglichkeiten:

• ...

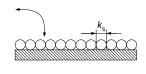
 k als Standard-Rauheit k<sub>s</sub> (vorzugsweise: Nikuradses Sandrauheit)

. . . .

#### Problem: Korrespondenztafel erforderlich



| Korrespondenztafel             |              |    |  |
|--------------------------------|--------------|----|--|
| Material und<br>beschaffenheit | Oberflächen- | ks |  |
| ÷                              |              | :  |  |



bisher: Experimentelle Bestimmung der Korrespondenztafel (Nikuradse)

jetzt: Bestimmung mit Hilfe einer Dissipationsanalyse

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

$$\lambda_{\rm R} \equiv rac{arphi_{12}}{L_{12}} rac{2D_{
m h}}{u_{
m m}^2}$$
 (Reibungszahl zwischen ① und ②)

$$\lambda_{\rm R} \equiv rac{arphi_{12}}{L_{12}} rac{2D_{\rm h}}{u_{
m m}^2}$$
 (Reibungszahl zwischen ① und ②)

Dissipation mechanischer Energie zwischen ① und ②:  $\varphi_{12}$ 

$$\lambda_{\rm R} \equiv \frac{\varphi_{12}}{L_{12}} \frac{2D_{\rm h}}{u_{\rm m}^2}$$
 (Reibungszahl zwischen ① und ②)

Dissipation mechanischer Energie zwischen ① und ②:  $\varphi_{12}$ 



Entropie<br/>produktion zwischen ① und ②:  $\dot{S}_{12}$ 

$$\lambda_{\rm R} \equiv \frac{\varphi_{12}}{L_{12}} \frac{2D_{\rm h}}{u_{\rm m}^2}$$
 (Reibungszahl zwischen ① und ②)

Dissipation mechanischer Energie zwischen ① und ②:  $\varphi_{12}$ 



Entropie<br/>produktion zwischen ① und ②:  $\dot{\textit{S}}_{12}$ 

$$\varphi_{12} = T\dot{S}_{12}/\dot{m}$$

$$\lambda_{\rm R} \equiv \frac{\varphi_{12}}{L_{12}} \frac{2D_{\rm h}}{u_{\rm m}^2}$$
 (Reibungszahl zwischen ① und ②)

Dissipation mechanischer Energie zwischen ① und ②:  $\varphi_{12}$ 



Entropie<br/>produktion zwischen ① und ②:  $\dot{S}_{12}$ 

$$\varphi_{12} = T \dot{S}_{12} / \dot{m}$$

$$\dot{S}_{12} = \int \dot{S}^{\prime\prime\prime} dV$$

$$\lambda_{\rm R} \equiv \frac{\varphi_{12}}{L_{12}} \frac{2D_{\rm h}}{u_{\rm m}^2}$$
 (Reibungszahl zwischen ① und ②)

Dissipation mechanischer Energie zwischen ① und ②:  $\varphi_{12}$ 



Entropie<br/>produktion zwischen ① und ②:  $\dot{S}_{12}$ 

$$\varphi_{12} = T \dot{S}_{12} / \dot{m}$$
$$\dot{S}_{12} = \int \dot{S}^{"'} dV$$

$$\dot{S}''' = \frac{\mu}{T} \left( 2 \left[ \left( \frac{\partial u}{\partial x} \right)^2 + \left( \frac{\partial v}{\partial y} \right)^2 + \left( \frac{\partial w}{\partial z} \right)^2 \right] + \left( \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2 + \left( \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right)^2 + \left( \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right)^2 \right)$$

$$\lambda_{\rm R} \equiv rac{arphi_{12}}{L_{12}} rac{2D_{
m h}}{u_{
m m}^2}$$
 (Reibungszahl zwischen ① und ②)

Dissipation mechanischer Energie zwischen ① und ②:  $\varphi_{12}$ 



Entropie<br/>produktion zwischen ① und ②:  $\dot{S}_{12}$ 

$$\varphi_{12} = T \dot{S}_{12} / \dot{m}$$
$$\dot{S}_{12} = \int \dot{S}^{"'} dV$$

$$\dot{S}''' = \frac{\mu}{T} \left( 2 \left[ \left( \frac{\partial u}{\partial x} \right)^2 + \left( \frac{\partial v}{\partial y} \right)^2 + \left( \frac{\partial w}{\partial z} \right)^2 \right] + \left( \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2 + \left( \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right)^2 + \left( \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right)^2 \right)$$



Dissipationsmodell

# Anwendung des Dissipationsmodells

Ebener Kanal mit glatten Wänden:

Ebener Kanal mit glatten Wänden:

$$\lambda_{\mathsf{R},12} = \lambda_{\mathsf{R}} = \frac{32}{\mathsf{Re}_{\mathsf{Dh}}} \int\limits_{0}^{1} \left(\frac{\partial u^*}{\partial y^*}\right)^2 dy^* = \frac{96}{\mathsf{Re}_{\mathsf{Dh}}}$$

Ebener Kanal mit glatten Wänden:

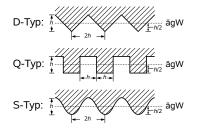
$$\lambda_{\mathsf{R},12} = \lambda_{\mathsf{R}} = \frac{32}{\mathsf{Re}_{\mathsf{Dh}}} \int\limits_{0}^{1} \left(\frac{\partial u^*}{\partial y^*}\right)^2 dy^* = \frac{96}{\mathsf{Re}_{\mathsf{Dh}}}$$

Ebener Kanal mit speziellen 2D-Rauheiten:

Ebener Kanal mit glatten Wänden:

$$\lambda_{\mathsf{R},12} = \lambda_{\mathsf{R}} = \frac{32}{\mathsf{Re}_{\mathsf{Dh}}} \int\limits_{0}^{1} \left(\frac{\partial u^*}{\partial y^*}\right)^2 dy^* = \frac{96}{\mathsf{Re}_{\mathsf{Dh}}}$$

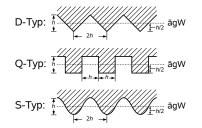
Ebener Kanal mit speziellen 2D-Rauheiten:



Ebener Kanal mit glatten Wänden:

$$\lambda_{\mathsf{R},12} = \lambda_{\mathsf{R}} = \frac{32}{\mathsf{Re}_{\mathsf{Dh}}} \int\limits_{0}^{1} \left(\frac{\partial u^*}{\partial y^*}\right)^2 dy^* = \frac{96}{\mathsf{Re}_{\mathsf{Dh}}}$$

Ebener Kanal mit speziellen 2D-Rauheiten:



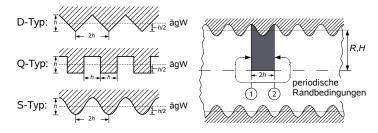
$$\lambda_{\mathsf{R},12} = \lambda_{\mathsf{R}} = \frac{32}{\mathsf{Re}_{\mathsf{Dh}}} \int_{0}^{1} \left( 2 \left[ \left( \frac{\partial u^*}{\partial x^*} \right)^2 + \left( \frac{\partial v^*}{\partial y^*} \right)^2 \right] + \left( \frac{\partial v^*}{\partial x^*} + \frac{\partial u^*}{\partial y^*} \right)^2 \right) dy^*$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Ebener Kanal mit glatten Wänden:

$$\lambda_{\mathsf{R},12} = \lambda_{\mathsf{R}} = \frac{32}{\mathsf{Re}_{\mathsf{Dh}}} \int\limits_{0}^{1} \left(\frac{\partial u^*}{\partial y^*}\right)^2 dy^* = \frac{96}{\mathsf{Re}_{\mathsf{Dh}}}$$

Ebener Kanal mit speziellen 2D-Rauheiten:



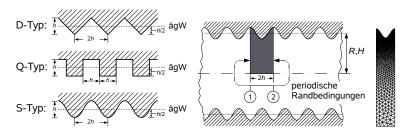
$$\lambda_{\mathsf{R},12} = \lambda_{\mathsf{R}} = \frac{32}{\mathsf{Re}_{\mathsf{Dh}}} \int\limits_{0}^{1} \left( 2 \left[ \left( \frac{\partial u^*}{\partial x^*} \right)^2 + \left( \frac{\partial v^*}{\partial y^*} \right)^2 \right] + \left( \frac{\partial v^*}{\partial x^*} + \frac{\partial u^*}{\partial y^*} \right)^2 \right) dy^*$$

H. Herwig, D. Gloss (TUHH) 9 / 18

Ebener Kanal mit glatten Wänden:

$$\lambda_{\mathsf{R},12} = \lambda_{\mathsf{R}} = \frac{32}{\mathsf{Re}_{\mathsf{Dh}}} \int\limits_{0}^{1} \left(\frac{\partial u^*}{\partial y^*}\right)^2 dy^* = \frac{96}{\mathsf{Re}_{\mathsf{Dh}}}$$

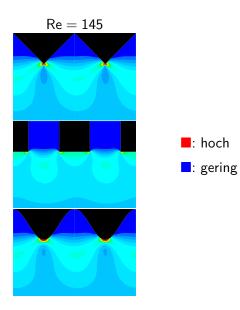
Ebener Kanal mit speziellen 2D-Rauheiten:



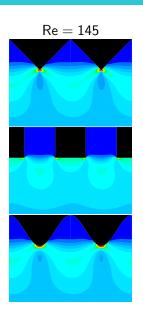
$$\lambda_{\mathsf{R},12} = \lambda_{\mathsf{R}} = \frac{32}{\mathsf{Re}_{\mathsf{Dh}}} \int\limits_{0}^{1} \left( 2 \left[ \left( \frac{\partial u^*}{\partial x^*} \right)^2 + \left( \frac{\partial v^*}{\partial y^*} \right)^2 \right] + \left( \frac{\partial v^*}{\partial x^*} + \frac{\partial u^*}{\partial y^*} \right)^2 \right) dy^*$$

H. Herwig, D. Gloss (TUHH) 9 / 18

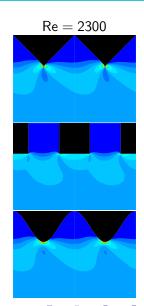
# $\dot{S}^{'''}$ Verteilung

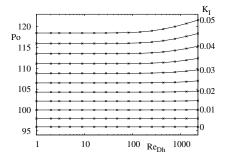


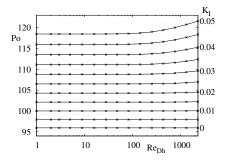
# $\dot{S}^{'''}$ Verteilung

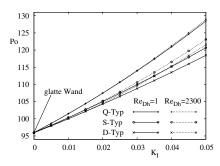


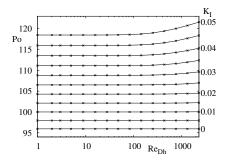
■: hoch■: gering

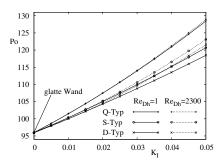






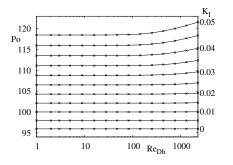


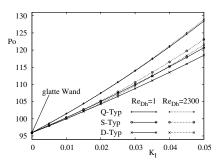




#### Beachte:

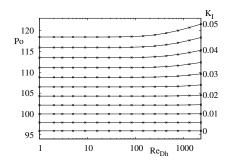
• Po =  $\lambda_R$ Re = const für Re  $\rightarrow$  0 (kein Mikroeffekt !)

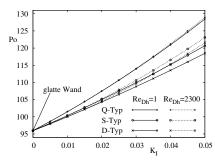




#### Beachte:

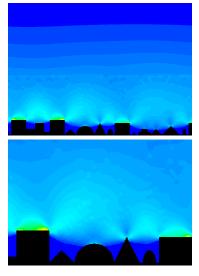
- Po =  $\lambda_R$ Re = const für Re  $\rightarrow$  0 (kein Mikroeffekt !)
- Po =  $\lambda_{\mathsf{R}} \mathsf{Re} = \mathsf{Po}(\mathsf{Re}) \; \mathsf{für} \; \mathsf{Re} \to \infty$



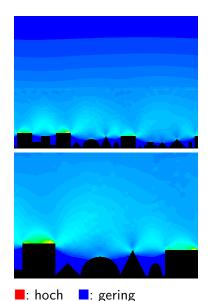


#### Beachte:

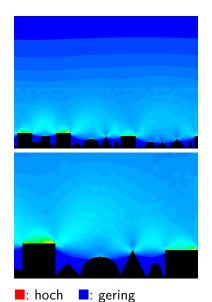
- Po =  $\lambda_R$ Re = const für Re  $\rightarrow$  0 (kein Mikroeffekt !)
- Po =  $\lambda_{\mathsf{R}} \mathsf{Re} = \mathsf{Po}(\mathsf{Re}) \; \mathsf{für} \; \mathsf{Re} \to \infty$
- eine dieser regulären Rauheiten kann als Standard-Rauheit  $k_s$  dienen



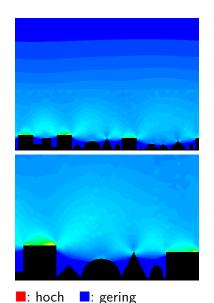
■: hoch ■: gering



technische Rauheit  $\rightarrow k_{\rm t}/D_{\rm h}$ 

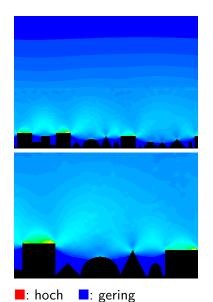


technische Rauheit  $ightarrow \mathit{k}_{t}/\mathit{D}_{h}$ Standard-Rauheit  $ightarrow \mathit{k}_{s}/\mathit{D}_{h}$ 



technische Rauheit  $\rightarrow k_{\rm t}/D_{\rm h}$ Standard-Rauheit  $\rightarrow k_{\rm s}/D_{\rm h}$ 

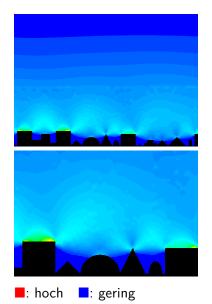
 $arphi_{12, {
m technisch}} = arphi_{12, {
m standard}}$ 



technische Rauheit  $ightarrow \mathit{k}_{t}/\mathit{D}_{h}$  Standard-Rauheit  $ightarrow \mathit{k}_{s}/\mathit{D}_{h}$ 

 $\varphi_{12, \text{technisch}} = \varphi_{12, \text{standard}}$ 





technische Rauheit  $ightarrow \mathit{k}_{t}/\mathit{D}_{h}$ Standard-Rauheit  $ightarrow \mathit{k}_{s}/\mathit{D}_{h}$ 

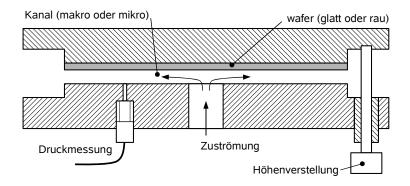
 $arphi_{12, \mathrm{technisch}} = arphi_{12, \mathrm{standard}}$ 



#### Korrespondenztafel

|   | Material (Oberfläche) | ks |
|---|-----------------------|----|
| : |                       | 1  |
|   |                       |    |

# Experimentelle Validierung des Dissipationsmodells



13 / 18

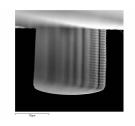
Kanallänge: 40 mm

Kanallänge: 40 mm

Kanalhöhe: 40...800 μm

- Kanallänge: 40 mm
- Kanalhöhe: 40...800 μm
- Rauheitshöhe (Q-Typ): 20 μm

- Kanallänge: 40 mm
- Kanalhöhe: 40...800 μm
- Rauheitshöhe (Q-Typ): 20 μm



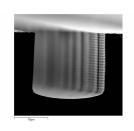
Kanallänge: 40 mm

Kanalhöhe: 40...800 μm

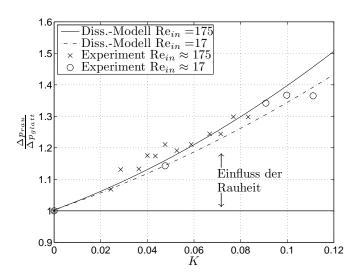
Rauheitshöhe (Q-Typ): 20 μm

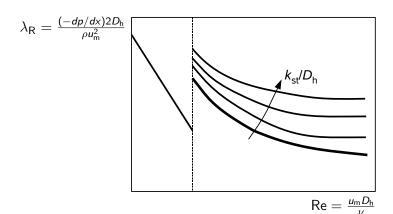
• Messergebnis  $\frac{\Delta p_{\mathsf{rau}}}{\Delta p_{\mathsf{glatt}}}$  über  $K = \frac{k}{D_{\mathsf{h}}}$ 



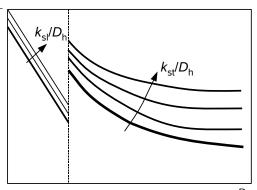


### Ergebnisse: Messung / Dissipationsmodell

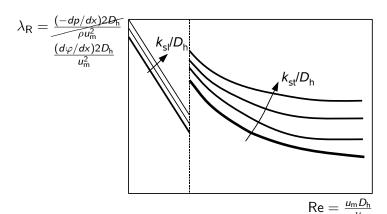




$$\lambda_{\mathsf{R}} = \underbrace{\frac{(-dp/dx)2D_{\mathsf{h}}}{\rho u_{\mathsf{m}}^2}}_{\underbrace{(d\varphi/dx)2D_{\mathsf{h}}}}_{u_{\mathsf{m}}^2}$$

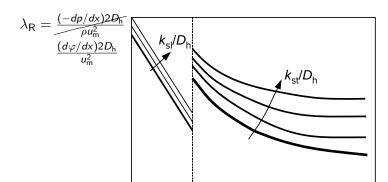


$$\mathrm{Re} = \frac{u_\mathrm{m} D_\mathrm{h}}{\nu}$$



#### Lehrbuch-Aussage:

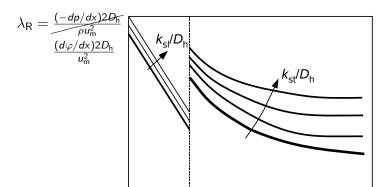
Für laminare Strömungen ist der Druckverlust unabhängig von der Rauheitshöhe  $k_{\rm s}/D_{\rm h}$ .



# $Re = \frac{u_m D_h}{\nu}$

#### Lehrbuch-Aussage:

Für laminare Strömungen ist der Druckverlust unabhängig von der Rauheitshöhe  $k_s/D_h$ .



$$Re = \frac{u_m D_h}{\nu}$$

#### Lehrbuch-Aussage:

Für laminare Strömungen ist der Druckverlust unabhängig von der Rauheitshöhe  $k_{\rm s}/D_{\rm h}.$ 

Für laminare Strömungen ist der Gesamtdruckverlust abhängig von der Rauheit  $k_{\rm sl}/D_{\rm h}$ .

Das war's!

#### Das war's doch noch nicht!

