

Strömungssimulation in porösen Keramiken

Virtuelle Generierung keramischer Drossel-Geometrien und numerische Abschätzung der Strömung mit GeoDict®.

Verena Schmitz • annaverenaschmitz@stud.fh-luebeck.de Yavuz Selim Mutlu

Medizinische Sensor- und Gerätetechnik • www.msgt.fh-luebeck.de

Hintergrund

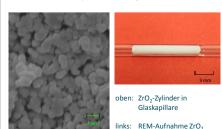
Projekt VarioPump: Drosselung des Medikamentenstroms einer implantierbaren Infusionspumpe mithilfe nanoporöser Keramiken

Geschwindigkeiten bei Strömungen im Nanoliter/Minute-Bereich → Reynoldszahlen < 1

Navier-Stokes Gleichungen vereinfachen zu Stokes Strömung

Strömung in porösen Medien: Stokes-Brinkman-Gleichung (berücksichtigt materialspezifische intrinsische Permeabilität nach Darcy)

Die CFD-Software GeoDict der Firma "Math2Market ", entstanden am Fraunhofer ITWM in Kaiserslautern, bietet spezielle Strömungssimulationen für poröse Medien und die Anwendung der Stokes-Brinkman-Gleichung in einem Finite-Volumen-Verfahren



Keramiken

Zirkoniumdioxid (ZrO₂)

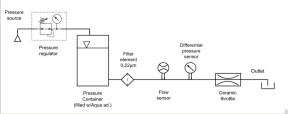
- · mittlerer Porendurchmesser 0,2 μm
- Homogenes Gefüge (isotrop)
- einphasig
- eingeschmolzen in Glaskapillare
- Vollzylinder, Länge ≈ 11 mm

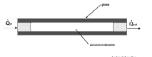
Aluminiumoxid (Al₂O₂)

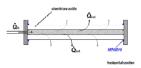
- mittlere Porendurchmesser von 0,11 bis 0,41 μm
- homogenes Gefüge (isotrop)
- jeder Typ einer Porengröße zusätzlich mit ZrO₂-Körnern (3nm) infiltriert
- Hohlkörper, Länge ≈ 20 mm

(links: 0,11µm; rechts: 0,41 µm Poren)

links: Al₂O₃-Hohlkörper



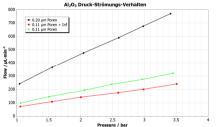




Experimentelle Ermittlung der intrinsischen Permeabilität

- Laborexperimente zur Bestimmung der Strömungsgeschwindigkeit bei einem angelegten Druck
- Abmessungen der Keramik müssen bekannt sein, um Weglänge durch die Keramik und Anströmfläche zu
- Temperaturmessung zur Viskositäts-Bestimmung der Test-Flüssigkeit (Aqua ad.)
- Berechnung der Permeabilität als charakteristische Materialkonstante der Keramiken anhand der Darcy-Gleichung

- Permeabilität nach Darcy [m²
- mittlere Geschwindigkeit [m/s]
- dvnamische Viskosität [Pa*s]
- Δp: Differenzdruck [Pa]
- Δx: Länge in Strömungsrichtung durch das poröse Medium [m]

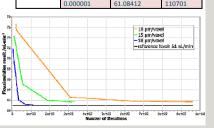


Ergebnisse der Strömungsmessungen

Keramik	Mittlere Porengröße [µm]	Infiltration	Ermittelte Permeabilität [m²]
ZrO ₂	0,2	-	7,21 E-17
Al ₂ O ₃	0,11	-	1,02E-16
Al ₂ O ₃	0,11	✓	5,12 E-17
Al_2O_3	0,2	-	2,44 E-16
Al ₂ O ₃	0,41	✓	2,05 E-15
Al_2O_3	0,41	-	2,58 E-15
Vgl:Sand	-	<u> </u>	1,02 E-08
Vgl: Ton	-	-	1,02 E-15

- Linearer Zusammenhang zwischen Druck und Strömung
- Deutlich erkennbarer Einfluss der Infiltration

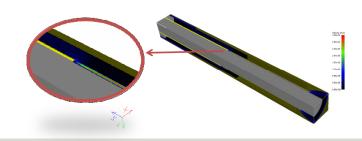
- Generierung der virtuellen Drosselgeometrien und vergleichbarer Strukturer der Laborexperimente in GeoDict
- Auswahl der geeigneten Eingangs-Parameter für den numerischen Löser, physikalische Randbedingungen und Zuordnung der Materialpermeabilitäten (solid: K=0; freie Strömung K=∞; porös: K=?)
- Validierung des Konvergenzverhaltens und der Konsistenz der Simulationen



Auswertung

- Die ZrO₂-Vollzylinder konvergiert in unterschiedlicher Geschwindigkeit für verschiedene Gitterauflösungen
- Strukturen mit einer gröberen Gitterauflösung konvergieren schneller
- Gitterverfeinerungen zu einer größeren Anzahl an Iterationen und damit zu längeren Rechenzeiten
- Über einen Vergleich der Ergebnisse aus den Laborexperimenten konnte die Konsistenz der Simulationen überprüft werden

Auflösung [μm/voxel]	Genauigkeit	Flow Ergebnis [nL/min]	Iterationen
10	0.001	76.6125	19501
	0.0001	75.52943	21301
	0.00001	62.63181	307301
	0.000001	61.83742	634201
	0.0000001	61.75871	960002
15	0.001	74.27286	10700
	0.0001	65.11897	55800
	0.00001	62.0134	187200
	0.000001	61.69751	331500
30	0.001	71.79978	3500
	0.0001	62.11072	32900
	0.00001	61.175365	72201
	0.000001	61.08412	110701



Ergebnisse und Ausblick

- Untersuchung verschiedener Varianten der Drosselgeometrie (Bohrungsdurchmesser, Stiftpositionen, Austrittflächen)
- Analyse des Konvergenzverhaltens
- Vergleich der relativen Abweichungen bei Geometrievariationen
- Entscheidung über weitere sinnvolle Laborexperimente mithilfe der Simulationsergebnisse

