

Design and implementation of a test bed to separate different drugs in multi-infusion system using gas bubbles

S. Abdul-Karim¹, J. Schroeter¹, B. Nestler¹

¹Medical Sensors and Devices Laboratory, Lübeck University of Applied Sciences, Lübeck, Germany

setups due to flow rates and pressure differences between syringe pumps[1].

problems Hygiene when transporting patient between operation room and Intensive Care Unit[2].

 Chemical incompatibility between drugs; means that the be chemically drug may degraded, due to oxidation, or decomposition[3].

 Chaos and complexity in infusion lines could be seen as a source of errors.

Complexity creates opportunity for errors[4].

• By inserting only a single Catheter and applying a proper separation method between flowing drugs, the total volume of the delivery station Concept will be miniaturized[5].

Solution

One miniaturized IV delivery station

A concept for single Catheter infusion system[2].

Results

State- of- The Art Drug Multiplexing

Realization of Concept

Measurements

The quantitative results (for testing Catheters of different materials and

diameters with different flow rates) are shown in the table.

	Dosed volume 0.41 [mL]		Dosed volume 0.16 [mL]	
Material of Catheter	Measured volumes		Measured volumes	
	Mobile phase	Cleaning medium	Mobile phase	Cleaning medium
PUR*	0.46 (+12.2 %)	0.48 (+17 %)	0.18 (+12.5 %)	0.17 (+ 6.25)
PVC**	0.43 (+4.878%)	0.40 (-2.439%)	0.17 (+6.250%)	0.17 (+6.250%)
*Polyurethane (Catheter radius: 1.25 mm)				
**Polyvinyl chloride (Catheter radius: 1.5 mm)				
The results present the mean of 8 values.				
The measurements were done at 25 $^\circ$ C and 30% RH.				

Test bed as a functional prototype attached via Catheter to a phlebotomy arm.

Conclusion

• The design of a test bed toward one module delivery station is accomplished.

Outlook

• Verifying the separation principle qualitatively and quantitatively.

• The principle of separating different fluidic media using gas bubbles is quantitatively approved.

• Developing a functional model.

References

- A.M.D Timmerman, B. Riphagen, J.H.G.M Klaessens; R.M. Verdaasdonk, Development and validation of a new method for real-time measurement of fluid dynamics during simulated multi-infusion setups IFMBE Proceedings Vol. 25, 2009
- S. Abdul-Karim, Design and development of a test bench to separate drugs in a multi-infusion system using gas bubbles, Master Thesis, Lübeck University of Applied Sciences, 2013 [2]
- Internet: http://www.safeinfusiontherapy.com/cps/rde/xchg/hc-safeinfusion-en-int/hs.xsl/7854.html (Accessed: 27 May 2013) [3]
- Image "Complexity creates opportunity for errors", Internet:http://ehealthinnovation.org (Accessed: 01 Mar. 2014.)
- B. Nestler, Drug Multiplexing project description. Lübeck University of Applied Sciences, 2011 [5]

Corresponding Author

Saif Abdul-Karim, M.Sc Medical Sensors and Devices Laboratory Lübeck Universtiy of Applied Sciences Mönkhofer Weg 239 23562 Lübeck, Germany saif.abdul-karim@fh-luebeck.de http://www.msgt.fh-luebeck.de/

Acknowledgment The authors gratefully acknowledge the financial support of the German Federal Ministry of Education and Research .

GEFÖRDERT VOM

für Bildung und Forschung

Drugmultiplexing ProfilNT des Bundesministeriums für Bildung und Forschung (BMBF) Zentrum für Medizintechnik Projektleiter: Prof. Dr. rer. nat. Bodo Nestler