Motivation and Clinical Relevance
Metrology for Drug Delivery
Annemoon Timmermann, UMC
The Clinical Cause

- Infant with acute blood pressure problem
- Dopamine infused to raise blood pressure
- No result
- Increasing dopamine flow rate
- No result
- Increasing dopamine again
- Overshoot
- No relation found with dopamine setpoint
- Decreasing dopamine flow rate
- No result
- Etc..

Clinical relevance: widespread use of infusion

- Almost every patient receives IV Therapy
- Many different applications
- Many users
- Many errors/ adverse events
- Potentially high impact
Therapeutic range

![Therapeutic range graph]

Small therapeutic range: Set point deviations are more relevant

Half life of drugs

- Serum concentration is determined by
 - Administered dose
 - Half life of drug
- Short half life drugs
 - can be more easily controlled in theory
 - are more sensitive to dose/ flowrate changes

Clinical relevance of flow rate accuracy

- Small therapeutic range
- Small drug half life
 - Vasopressors
 - Inotropics
 - Certain anesthetics
- Condition of the patient
 - Fluid intake restriction
- Drug concentration

Control mechanism infusion

Driving mechanism:
- Displacement of plunger by step motor

Control mechanism
- Change in step motor velocity

Setpoint parameter
- Flow rate

Non plunger displacement induced flowrate changes are not noticed by the system

> poor measurability
> poor controllability
Standards and regulations

- Pumps: IEC/EN 60601-2-24
 - Describes “trumpet curve”
- Syringes: ISO 7886-2
 - Describes maximum compliance (compressibility)
 - Describes maximum “dead volume”

No specific regulations for low flowrate/ specific applications

No protocols describing maximum internal volume

No output measurements of entire system (pump+ syringe+ infusion line and catheter)

In-vitro experiment: “push-out” effect

Blue:
Set point increased

Green:
“push-out effect”
Same direction
In-vitro experiment: “compliance” effect

- Mass flow rate
- System compliance results in start up time

Red: Compliance Effect
Blue: Set point increased

Opposite direction

This time is long enough to cause thrombosis

Computer simulation (method)

- Schematic representing a multi-infusion set-up with N pumps. Network Q1, Q2 .. Qn are sources (pumps). qn is the flow rate output of pumpn- (before the mixing point)
- Electric analogue for multi-infusion setup to simulate the outflow
- Standard analytical methods (Laplace domain)
- System of 3 pumps was calculated
Results of computer simulation (compliance effect)

- initial situation: steady state values
- At t=0.5, pump #1 is set to 14
- the flow rates of the parallel pumps #2 and #3 react to the pressure difference caused by the flow rate changes of pump #1, in the form of altered storage of fluid in the compliance (capacitor effect) of the (plunger of the) syringe

Equal lengths

Combining the results

In-vitro experiment: “push-out” effect
- Blue: Set point increased
- “push-out effect” _Same direction_

In-vitro experiment: compliance effect
- Blue: Set point increased
- compliance effect _Opposite direction_

Computer simulation: compliance effect
- Blue: Set point increased
- compliance effect _Opposite direction_
- Equal lengths
Implications of results 1

“push-out effect”
Same direction
compliance effect
Opposite direction

Mathematical fact:

IF:

• Two opposite effects that play a role
• Effects may be of same order of magnitude
• Strength of effects depends on many factors

THEN:

Direction and strength of total net result may be hard to predict and counter-intuitive

Implications of results 2

Results of computer simulation (compliance effect)

Equal lengths (absolute : ml/h)

Implications:

Impact on “red” medication relatively high as a percentage of the red set point value
Discussion

• The in-vitro experiments, as well as the computer simulation, of a 3-pump multi-infusion set-up, show:
 • Internal volume effect produces a deviation in *the same direction* as the direction of the change in flow rate set point (of another pump, e.g. the "blue" pump),
 • Syringe compliance effect produces a deviation in *the opposite direction* with respect to the direction of the flow rate set point change
 • Syringe compliance effects are particularly important at low flow rates
 • At low flow rates, deviations have a higher clinical relevance

Conclusions

• In-vitro experiments as well as computer simulations show that the direction as well as the strength of the net compound deviations in multi-infusion are highly unpredictable and often counter-intuitive.
 • Accurate measurement of the mechanical compliances in the multi-infusion set-up adds to controllability and thus to safety
 • Increased focus and effort should be directed to the metrology of mechanical compliances at low flow rates.
 • Regulation concerning mechanical compliances should be updated and more strictly specified, especially for low flow rates
Disclaimer

This research was funded in the EMRP project Metrology for drug delivery. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.