

Primary standard for nanoflow rates

8th Workshop on low flows in medical technology September 2014, Lübeck, Germany

Peter Lucas

The research leading to the results discussed in this report has received funding from the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within Euramet and the European Union.

Metrology Institute

Dutch

Primary standard nanoflow rates

Overview of this presentation

- Motivation
- Design and working principles
- Traceability
- Results intercomparison
- Conclusions and future work

Motivation

Low to ultra-low flow rates

- Applications
 - Drug delivery by means of implanted infusion pumps (e.g. Tricumed IP 2000V down to 0.01 mL/h)
 - Drug delivery for patients with fluid restrictions (down to 0.1 mL/h)
 - Critical drug delivery, e.g. anesthetics and vasoactive drugs (down to 0.1 mL/h)
- Difficult to control flow rate
- Technology not applicable (e.g. 50 mL syringe for 0.1 mL/h)
- Technology not fully matured (e.g. implanted infusion pumps)
- Metrological infrastructure not in place, no traceable calibrations possible
 - No calibration facilities available flow rates < 0.5 mL/h
 - Calibration facilities below 100 mL/h not validated
 - Current commercial devices not validated/ not applicable

8th workshop on Low flows in medical technology, Lübeck, 2014

3 of 12

Presenting the results of MeDD

Today's program Part I and II

- Clinical relevance (Annemoon Timmerman UMC)
- Calibration facilities based on the gravimetric principle (Hugo Bissig - METAS)
- Calibration facilities based on volumetric expansion (Peter Lucas - VSL)
- Calibration facilities based on front tracking in a capillary (Martin Ahrens – FH Lübeck
- Preliminary results assessm (Elsa Batista - IPQ)
- Dosing errors in multi-infusion

8th workshop on Low flows

Dutch

Primary standard nanoflow rates

Goal

Standard (calibration facility) for nanoflow rates

- flow rate 10 nl/min ~ 10 µl/min
- liquid flow rates at ambient pressure and temperature
- target uncertainty ≤ 0.5% (required drug delivery uncertainty ≈ 5%)
- based on volumetric expansion
- calibration facility generates a flow rates

8th workshop on Low flows in medical technology, Lübeck, 2014

5 of 22

Primary standard nanoflow rates

Overview of this presentation

- Motivation
- Design and working principles
- Traceability
- Results intercomparison
- Conclusions and future work

Working principle

Calibration

Design (2)

Dutch Metrology Institute

8th workshop on Low flows in medical technology, Lübeck, 2014

Primary standard nanoflow rates

Overview of this presentation

- Motivation
- Design and working principles
- Traceability
- Results intercomparison
- Conclusions and future work

8th workshop on Low flows in medical technology, Lübeck, 2014

11 of 22

Theoretical model

Dutch Metrology Institute

Flow rate at the **exit of the reservoir**: $Q = -\frac{mk}{\rho^2} \left(\frac{\partial \rho}{\partial T}\right)_p$

Required corrections:

- Cooling down fluid elements (<1.5%)
- Spatial variation in temperature (<1.5%)
- Spatial variation in temperature gradient (<1%, \downarrow 0)
- Reservoir expansion (7 -13%, for T_{start} 40 20 °C)

8th workshop on Low flows in medical technology, Lübeck, 2014

13 of 22

Primary standard nanoflow rates rates

Overview of this presentation

- Motivation
- Design and working principles
- Traceability
- Results intercomparison
- Conclusions and future work

8th workshop on Low flows in medical technology, Lübeck, 2014

15 of 22

Intercomparison

nFlow – chip-based CMF – gravimetric standard

Dutch Metrology Institute

Results 2000 nL/min

Temperature, - gradient, flow rate

Results 2000 nL/min

Balance, flow rates balance, CMF and nFlow

Results

Consistency balance, CMF and nanoflow standard

	Mean flow rate (nL/min)			Relative error (%)			Standard deviation error (%)		
Target [nL/min]	nFlow	grav. stand.	Coriolis	Coriolis/ grav. st.	Coriolis/ nFlow	grav. st. / nFlow	Coriolis/ grav. st.	Coriolis/ nFlow	grav. st. / nFlow
100	113	110	134	28	21	5.7	24	14	18
333	353	378	369	-2.3	4.5	-6.5	0.2	1.6	1.3
2000	1776	1816	1796	-1.1	1.2	-2.2	0.8	1.2	0.7

Target flow	Indicated	Indicated	Zero	Calibration	Calibration	Deviation	En
rate	flow rate	flow rate	stability	uncertainty	uncertainty	(%)	(-)
(nL/min)	nFlow	grav. std.	CMF (%)	nFlow	uFlow		
	(nL/min)	(nL/min)		standard (%)	standard (%)		
100	113	110	33	21.3	> 100	5.7	< 1
333	353	378	10	6.3	> 100	-6.4	< 1
2000	1776	1816	2	3.1	11.2	-2.2	0.2

21 of 22

Conclusions and outlook

www.drugmetrology.com

Conclusions

- Primary standard for nanoflow rates based on volumetric expansion
- CFD to complete model and uncertainty budget
- Validated uncertainty budget
- Calibrate flow meters or facilitate cross checks

Outlook

• Simple coil rather than 3D printed reservoir

