

Calibration services for health care

Hugo Bissig METAS, Elsa Batista IPQ, Peter Lucas VSL, Harm Tido Petter VSL, Anders Koustrup Niemann DTI, Florestan Ogheard CETIAT, Martin Ahrens FH Lübeck

Content

- Metrology for Drug Delivery Overview
- 3 types of primary standards for calibration
 - Gravimetric method
 - Water front tracking in a capillary
 - Liquid thermometer method
- Validation of primary standards by means of inter comparison

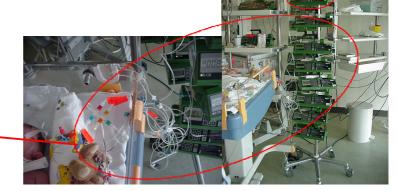
Motivation Metrology for drug

delivery (MeDD)

- 1. IV therapy can cause adverse patient incidents (various (inter)national studies)
- 2. Wide spread usage of infusion
- 3. Characteristics of infusion pumps + accessories not fully known
- 4. Un(der)developed and underused infrastructure for (low) liquid flow rate calibrations

BMT 2015, FS: Low Liquid Flows in Medical Technology, 2015, Lübeck, D

Unknown characteristics Reduced accuracy in delivered doses



Typically only the infusion pump (plus syringe) is 'calibrated' (according to existing written standards)

Adding accessories changes the response time

For a multi-pump set up, the pumps can interact with each other affecting the response behavior

Well characterized

Hardly characterized

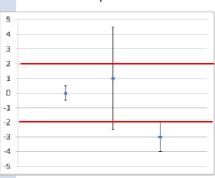
What has MeDD delivered?

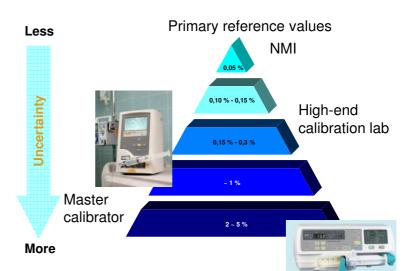
- 1. Metrology: upgraded and validated infrastructure for flow rate calibrations from 600 ml/h down to 0.006 ml/h
- 2. System characteristics: show cases infusion pump set ups
 - Pump plus accessories: effective flow rate, stability and start up time (compliance)
 - Dependency on fluid and process parameters (temperature, viscosity, flow rate, ...)
- 3. Knowledge and awareness: best practice guide and input to current written standards

BMT 2015, FS: Low Liquid Flows in Medical Technology, 2015, Lübeck, D

MeDD Consortium

- 2. University Medical Centre Utrecht (NL)
- 3. Lübeck University of Applied Sciences (DE)
- 4. EMRP Grant (2012, Health call)
 - Metrology-focused European programme
 - Accelerate innovation and competitiveness in Europe whilst continuing to provide essential support to underpin the quality of our lives




www.drugmetrology.com

Why calibraton? Why traceability to SI-Units?

Uncertainty of calibration has to be 3 (5) times smaller than the stated accuracy of the device under test or the maximum permissible error

- A sound calibration gives the flow rate error and the uncertainty in that error
- Traceability is a guarantee for quality of calibration results

BMT 2015, FS: Low Liquid Flows in Medical Technology, 2015, Lübeck, D

7

3 Types of Primary Standards

Gravimetric method

Flow rates 100 nl/min – 10 ml/min

Water front tracking in capillary

Flow rates 5 nl/min – 1 µl/min

Liquid thermometer method

Flow rates 30 nl/min – 1.5 µl/min

3 Types of Primary Standards

Gravimetric method

Flow rates 100 nl/min – 10 ml/min

Water front tracking in capillary

Flow rates 5 nl/min – 1 µl/min

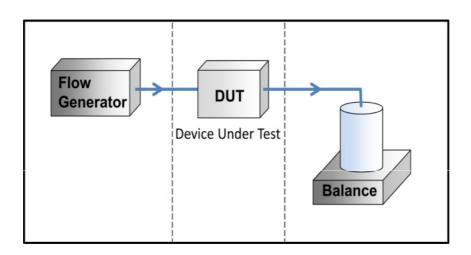
Liquid thermometer method

Flow rates 30 nl/min – 1.5 μl/min

Water droplet

Size 50µl (Pharmacology, Wikipedia)

Flow rate **10 ml/min**, time to get the droplet: **0.3 s**

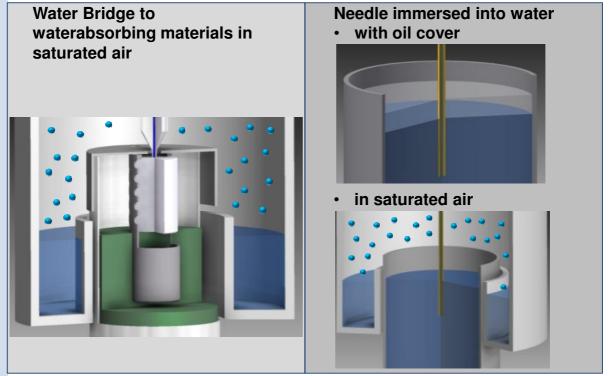

Flow rate **100 nl/min**, 500 min (8h 20 min) working day in Switzerland

Flow rate 5 nl/min, Full week (24/7)

BMT 2015, FS: Low Liquid Flows in Medical Technology, 2015, Lübeck, D

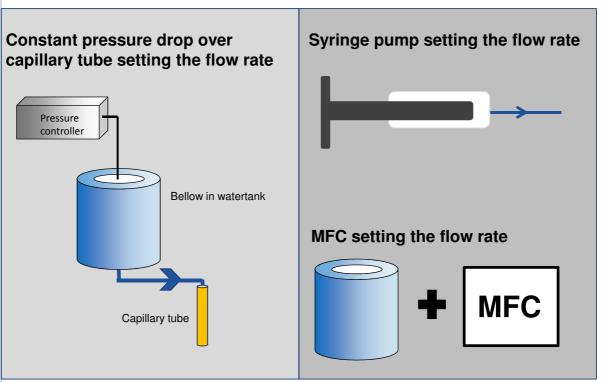
ç

Gravimetric Method



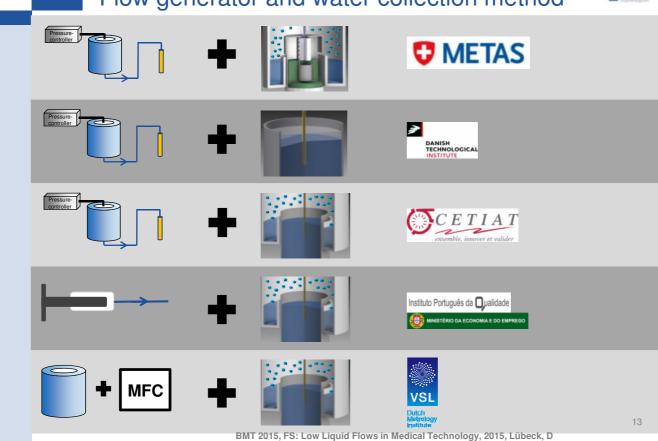
- 2 types of collecting water in beaker to avoid droplet formation and minimize evaporation
- 2 principles for flow generator

2 types of collecting water in beaker to avoid droplet formation and minimize evaporation


BMT 2015, FS: Low Liquid Flows in Medical Technology, 2015, Lübeck, D

11

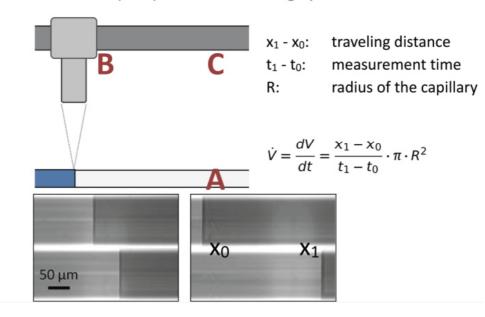
Gravimetric setup



Flow generator and water collection method

Gravimetric setup

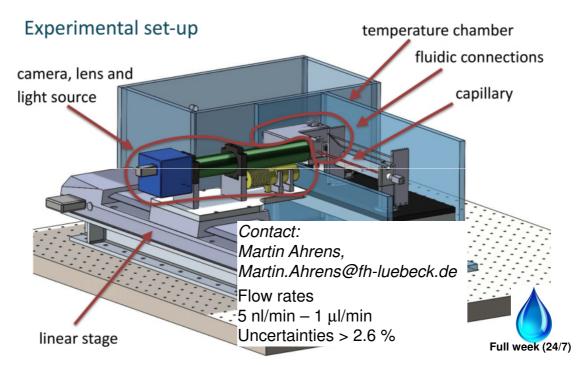
Micro Flow Facility - Gravimetric setup


		INSTITUTE ensemble, innover et valider			Institute
	METAS	DTI	CETIAT	IPQ	VSL
Flow rate range	1 ml/min – 100 nl/min	16 ml/min – 100 nl/min	133 ml/min - 16 μl/min	10 ml/min - 50 nl/min	16 ml/min - 4.2 μl/min
Uncertainty (k = 2)	0.1 - 0.6 %	0.05 - 0.6 %	0.04 – 1 %	0.15 - 6 %	0.06 - 1.4 %
Water temperature	Ambient	Ambient	10 - 50 °C	Ambient	Ambient
Pressure range upstream DUT	0 – 2.5 bar	0 – 5 bar	0 – 10 bar	0 – 2 bar	0 – 5 bar
Flow generator					★ MFC
Water collection					1255 - 127 1

Biomedical Engineering / Biomedizinische Technik. Band 60, Heft 4, Seiten 301-316

Water front tracking in a capillary

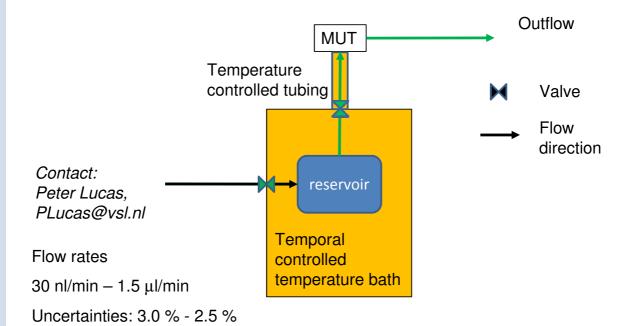
Measurement priciple: front tracking system


BMT 2015, FS: Low Liquid Flows in Medical Technology, 2015, Lübeck, D

15

Water Front Tracking

Water front tracking in a capillary



Biomedical Engineering / Biomedizinische Technik, Band 60, Heft 4. Seiten 337-345

Primary standard for nanoflow rates

Working principle

Biomedical Engineering / Biomedizinische Technik, Band 60, Heft 4. Seiten 317-335

BMT 2015, FS: Low Liquid Flows in Medical Technology, 2015, Lübeck, D

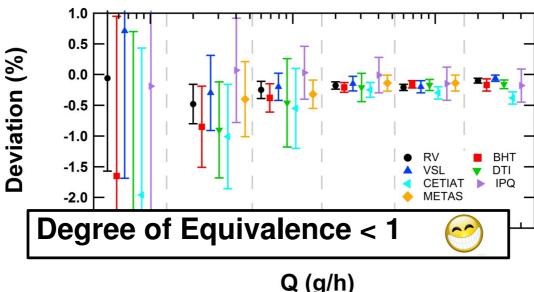
17

Validation of primary standards by means of inter comparison

EURAMET project 1291 / EURAMET.M.FF-S7

« Comparison of primary standards for liquid micro flow rates »

Internal report of MeDD (D 2.3.4)


« Comparison of primary standards for liquid nano flow rates »

Validation of primary standards by means of inter comparison

EURAMET project 1291 / EURAMET.M.FF-S7

« Comparison of primary standards for liquid micro flow rates »

Q (g/h)

BMT 2015, FS: Low Liquid Flows in Medical Technology, 2015, Lübeck, D

19

Micro Flow Facility – metrological infrastructure for low flow rate testing

Testing and calibration of

- Flow meters
- Flow generators
 - Syringe pump
 - o Peristaltic pump
 - o Insulin pump

Within this infrastructure it is possible to perform calibrations for different viscosities, temperatures and back pressure.

Micro Flow Facility - Contacts

Gravimetric setup

Flow rates 100 nl/min - 10 ml/min

Hugo Bissig Hugo.Bissig@metas.ch

Florestan Ogheard florestan.ogheard@cetiat.fr

Elsa Batista ebatista@ipq.pt

Anders Koustrup Niemann aknn@teknologisk.dk

Harm Tido Petter

Liquid thermometer method Flow rates 5 nl/min – 1 μl/min

HPetter@vsl.nl

Peter Lucas PLucas@vsl.nl

Water Front Tracking

FACH HOCHSCHULE LÜBECK University of Applied Sciences

Martin Ahrens, Martin.Ahrens@fh-luebeck.de

Flow rates $30 \text{ nl/min} - 1.5 \mu \text{l/min}$

BMT 2015, FS: Low Liquid Flows in Medical Technology, 2015, Lübeck, D

21

Questions?

