

Concept development and prototyping of a flow cell for blood preparation with acoustophoresis

F. Fiedler^{1,2}, A. Schlüter¹, C. Stark^{1,2}, B. Redmer^{1,2}, S. Müller¹

¹ Medical Sensors and Devices Laboratory, Lübeck University of Applied Sciences (FHL), Lübeck, Germany ² Graduate School for Computing in Medicine and Life Sciences, Lübeck University (UzL), Lübeck, Germany

Introduction

- Light scattering affects the concentration determination of dissolved blood components by absorption spectroscopy.
- Acoustophoresis is investigated to separate blood plasma and blood cells.

- Dimensions of the main channel are 1 mm width and 1 mm hight for accurate acoustic standing waves with a frequency of 1.6 MHz.
- Channel structure needs to be divided into three sections for separation
- A flow cell was designed and manufactured to analyze the separation process with acoustophoresis.

Theory

- Acoustophoresis utilises the different acoustic properties of blood cells, fluids and flow cell materials.
- Straight and plane channel walls are needed for good acoustic reflection.
- A high acoustic impedance of the flow cell material is necessary to achieve a standing acoustic wave inside the flow channel.
- Acoustic Radiation Force (ARF) causes movement of particles depending on their acoustic density in an acoustic standing wave.
- Glass accomplishes all specifications like acoustic impedance and optical transparency.
 - Tab. 1 Density, speed of sound and characteristic acoustic impedance of selected materials [1]

	Density/ kg m ⁻³	Speed of sound/ m s ⁻¹	Characteristic acoustic impedance/ 10 ⁶ kg m ⁻² s
Silicon	2331	8490	19.79
Steel – stainless 347	7890	5790	45.68
Aluminium	2700	6420	17.33
Borosilicate glass	2230	5647	12.59
Polymethyl methacrylate (PMMA)	1150	2590	2.98
H ₂ O (25°C)	997	1497	1.49

of blood plasma and cells.

- Main channel is divided into one channel in the middle with a width of 500 μ m and two channels with a width of 250 μ m.
- Inlet on the bottom and outlet on top of flow cell to avoid air bubbles.

Results

- Selective Laser-induced Etching (SLE) was used as manufacturing process for the flow cell.
- Flow cell was built out of quartz glass EN08 for optical transparency and high acoustic impedance.
- Secondary advantages of glass are biocompatibility and mechanical stability.
- Channel walls have a maximum deviation of the width by \pm 9 μ m in the main channel.

Outlook

Blood flow characteristics and separation efficiency during acoustophoresis should be further investigated with shown flow cell.

Flow Cell

Fig. 2 – Flow cell for acoustophoresis, produced with SLE with two Euro cent for scale [2], magnification of 100 for inlet and division section.

References

[1] A. Lenshof, M. Evander, T. Laurell, J. Nilsson, "Acoustofluidics 5 – Building microfluidic acoustic resonators", Lab on a chip 12(4), p. 684 – 695; DOI: 10.1039/c1lc20996e [2] LightFab GmbH, Steinbachstr. 15, D-52074 Aachen

Corresponding author

Felix Fiedler, M.Sc.

Lübeck University of Applied Sciences (FHL) Medical Sensors and Devices Laboratory Mönkhofer Weg 239, 23562 Lübeck, Germany felix.fiedler@fh-luebeck.de

FORSCHUNG AN FACHHOCHSCHULEN

Acknowledgement

This publication is a result of the ongoing research project opLaSens which is founded by the German Federal Ministry of Education and Research. Grant number: 13FH024PX4

Funded by

Federal Ministry of Education and Research