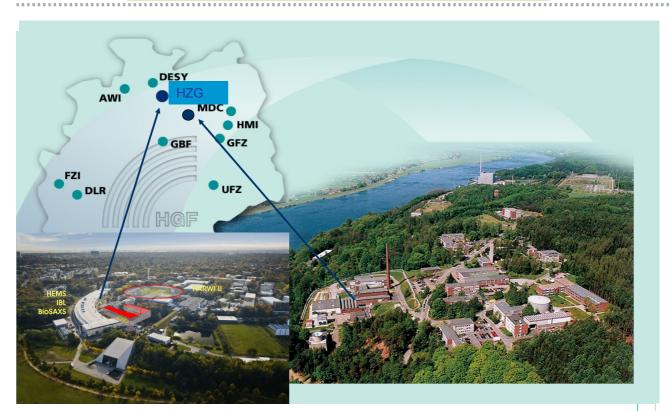
Micro Fluidic System for the Investigation of the Synovial Liquid by X-ray Scattering Method

Florian Wieland Institute for metallic biomaterials


Lübeck, 4.7.2018

Micro Fluidic System for the Investigation of the Synovial Liquid by X-ray Scattering Method

HELMHOLTZ ZENTRUM GEESTHACHT

Micro Fluidic System for the Investigation of the Synovial Liquid by X-ray Scattering Method

TIZU UUT STATION AT DEST

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

Lab techniques

Microtromography system Zeiss Nanotom Focused Ion Beam SEM (Geesthacht) Small angle X-ray scattering, Nanostar, Bruker XRD (surface and bulk) RöDi, Seifert

PO3 MINAXS (with DESY) Micro- and Nanofocus X-ray Scattering

PO

P0

PO

P08 P0

P05 IBL Imaging Beamline

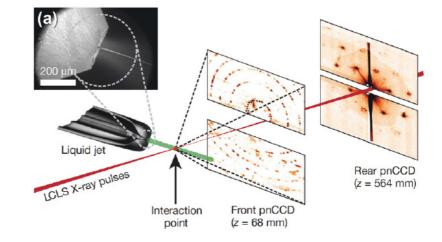
P07 HEMS (with DESY) High Energy Materials Science

Image courtesy of P10 Micro Fluidic System

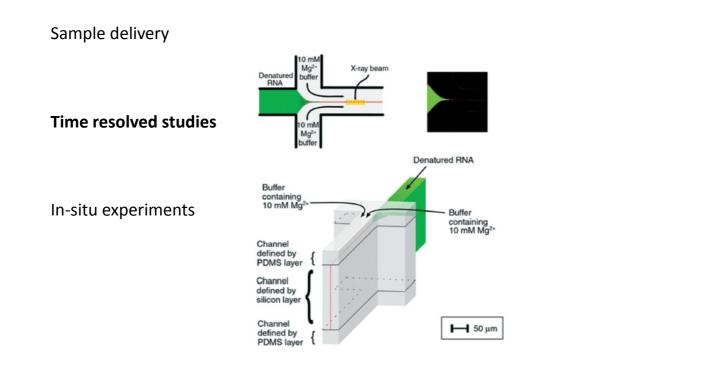
estigation of the Synovial Liquid by X-ray Scattering Method

.

P11


USE OF MICRO FLUIDICS

Sample delivery

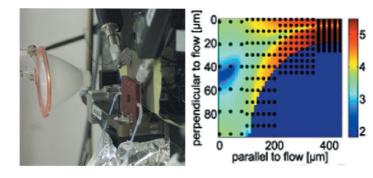

Time resolved studies

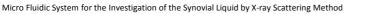
In-situ experiments

USE OF MICRO FLUIDICS

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

Micro Fluidic System for the Investigation of the Synovial Liquid by X-ray Scattering Method

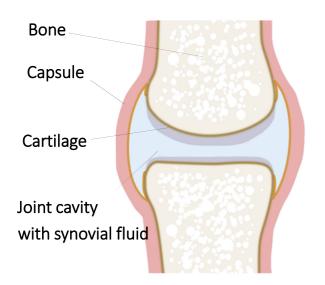

USE OF MICRO FLUIDICS


Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

Sample delivery

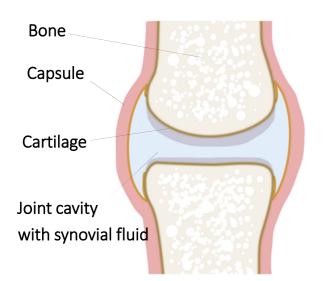
Time resolved studies

In-situ experiments



THE SYNOVIAL JOINT

Superior lubrication properties even under high shear and high load (high pressure)


T. Zander, PhD Thesis, 2016 Micro Fluidic System for the Investigation of the Synovial Liquid by X-ray Scattering Method

THE SYNOVIAL JOINT

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

Superior lubrication properties even under high shear and high load (high pressure)

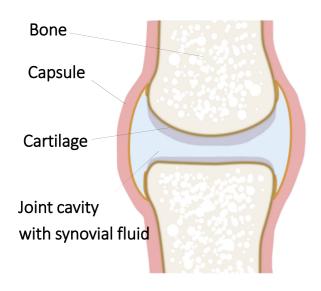
Properties of Joints

- very low friction

- high wear

resistance

- high adaptability


(jumping, running ...

THE SYNOVIAL JOINT

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

-

Superior lubrication properties even under high shear and high load (high pressure)

Properties of Joints

- very low friction

- high wear

resistance

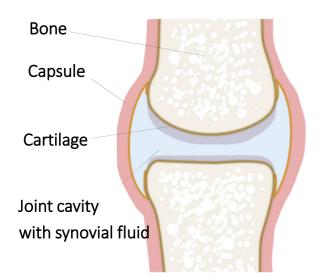
- high adaptability

(jumping, running ...

Pressures: 60MPa

Shear rates:1 to 100kHz

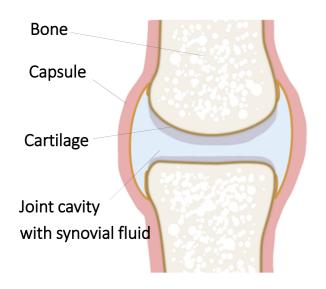
Fricition values: 0.01


T. Zander, PhD Thesis, 2016 Micro Fluidic System for the Investigation of the Synovial Liquid by X-ray Scattering Method

THE SYNOVIAL JOINT

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

Superior lubrication properties even under high shear and high load (high pressure)


Important constitutes of synovial fluid

- lipids (DPPC, DLPC, POPE ...
- proteins (albumin, lubricin, aggrecan)
- bio-polymers (hyaluronan)

THE SYNOVIAL JOINT

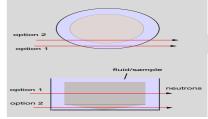
Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

Superior lubrication properties even under high shear and high load (high pressure)

Important constitutes of synovial fluid

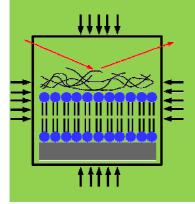
- lipids (DPPC, DLPC, POPE ...
- proteins (albumin, lubricin, aggrecan)
- bio-polymers (hyaluronan)

HOW DO THEY INTERACT


T. Zander, PhD Thesis, 2016Micro Fluidic System for the Investigation of the Synovial Liquid by X-ray Scattering Method

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

Interaction of polymer/lipid/protein mixtures under shear and pressure


Small angle scattering on liquid solutions of model fluids of Synovial fluid under shear & pressure

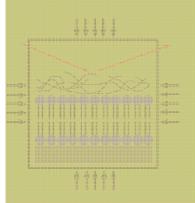
POLYMER AND PROTEIN SOLUTIONS UNDER NON EQUILIBRIUM AND NON STATIC CONDITIONS

Influence of pressure

Reflectivity measurements on surface with pressure up to 4000bar

Interaction of polymer/lipid/protein mixtures under different shear rates

Small angle scattering on liquid solutions of model fluids of Synovial fluid



POLYMER AND PROTEIN SOLUTIONS UNDER NON EQUILIBRIUM AND NON STATIC CONDITIONS

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

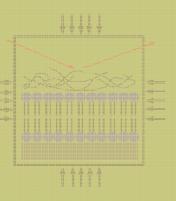
Reflectivity measurements on surface with pressure up to 4000bar

Interaction of polymer/lipid/protein mixtures under different shear rates

Small angle scattering on liquid solutions of model fluids of Synovial fluid

Interaction of polymer/lipid/protein mixtures under shear and pressure

Small angle scattering on liquid solutions of model fluids of Synovial fluid under shear & pressure


Micro Fluidic System for the Investigation of the Synovial Liquid by X-ray Scattering Method

POLYMER AND PROTEIN SOLUTIONS UNDER NON EQUILIBRIUM AND NON STATIC CONDITIONS

Influence of pressure

Reflectivity measurements on surface with pressure up to 4000bar

Interaction of polymer/lipid/protein mixtures under different shear rates

- low sample consumption

- high shear rates
- Easy handling

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

nteraction of oolymer/lipid/protein mixtures under shear and pressure

Small angle scattering on liquid solutions of model fluids of Synovial fluid under shear & pressure

HOW DOES SUCH A CHIP LOOK LIKE

- Infinitely high aspect ratio
- No attenuation by the chip material
- Inert material
- Low cost

.

Micro Fluidic System for the Investigation of the Synovial Liquid by X-ray Scattering Method

HOW DOES SUCH A CHIP LOOK LIKE

- Channel with narrows from 100µm to 10µm

Infinitely high aspect ratio maximum length in x-ray path length channel height from 100 μm to 10μm

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

and Austernorsenung

HOW DOES SUCH A CHIP LOOK LIKE

- Channel with narrows from 100µm to 10µm

- Infinitely high aspect ratio
- No attenuation by the chip material thin window materials low scattering not prone to radiation damage

Micro Fluidic System for the Investigation of the Synovial Liquid by X-ray Scattering Method

HOW DOES SUCH A CHIP LOOK LIKE

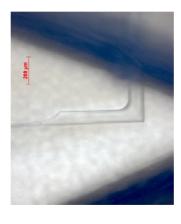
- Channel with narrows from 100µm to 10µm

- Infinitely high aspect ratio
- No attenuation by the chip material
- Inert material
- Low cost

.

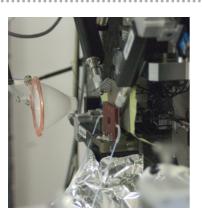
Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

HOW DOES SUCH A CHIP LOOK LIKE


Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

Helmholtz-Zentrum

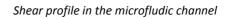
Zentrum für Material- und Küstenforschung

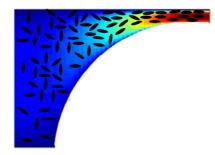

Geesthacht

- channels 100μm from 100μm down to 10μm
- Channel depth of 200µm
- Moderate attenuation
- Made of polymer but not stable in the x-ray beam
- 30€ each
- Microfluidic Chips
- Width 100 μm 10 μm
- Low volume
- High shear rates (100kHz)

Micro Fluidic System for the Investigation of the Synovial Liquid by X-ray Scattering Method

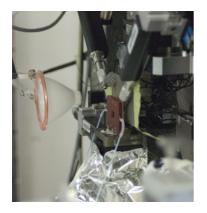
Macromolecules under shear


•Beamsize of 250 nm x 250 nm

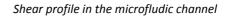

- •Energy 15 keV
- •Volume speed 0.1 µl/s, 5 mm/s
- •Shear rates probed from 100 s⁻¹ to 300000 s⁻¹
- •Lysozyme, reported to form clusters at high concentrations

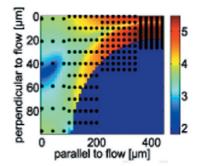
Microscope image of the microfluidic chip

Microfluidic Chips


- Width 300 μm 10 μm
- Low volume
- High shear rates (100kHz)

Macromolecules under shear

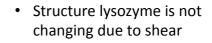


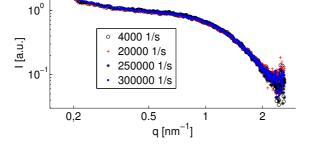

- •Beamsize of 250 nm x 250 nm
- •Energy 15 keV
- •Volume speed 0.1 μl/s, 5 mm/s
- •Shear rates probed from 100 s⁻¹ to 300000 s⁻¹
- •Lysozyme, reported to form clusters at high concentrations

Microscope image of the microfluidic chip

Microfluidic Chips

- Width 300 μm 10 μm
- Low volume
- High shear rates (100kHz)

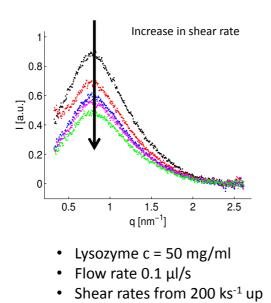




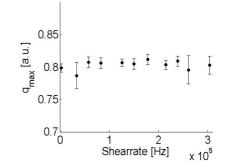
Micro Fluidic System for the Investigation of the Synovial Liquid by X-ray Scattering Meth

PROTEIN SOLUTIONS UNDER SHEAR

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung



- Lysozyme c = 50 mg/ml, 150 mM NaCl
- Flow rate 0.1 μl/s
- Shear rates from 200 ks⁻¹ up to 30 ks⁻¹

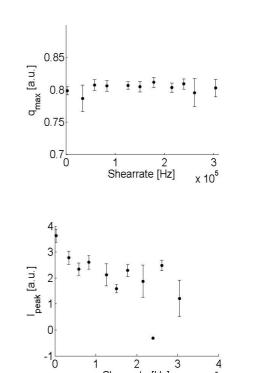


Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

international and hasternoistinang

to 30 ks⁻¹

Wieland et al., J. Syn. Rad. 2014 Micro Fluidic System for the Investigation of the Synovial Liquid by X-ray Scattering Method


23

PROTEIN SOLUTIONS UNDER SHEAR

Increase in shear rate 1 0.8 0.6 l [a.u.] 0.4 0.2 0 0.5 1 1.5 2 2.5 q [nm⁻¹] Lysozyme c = 50 mg/ml •

- Flow rate 0.1 μl/s
- Shear rates from 200 ks⁻¹ up to 30 ks⁻¹

Shearrate [Hz]

x 10⁵

24

Acknowledgements

- <u>HZG:</u>
- Regine Willumeit-Römer
- Thomas Zander
- Sören Gayer
- Vasyl Haramus
- Christina Krywka
- Michaela Waßmann
- <u>KTH:</u>
- Per Claesson
- Andra Dedinaite
- Min Wang
- Akanksha Raj

Micro Fluidic System for the Investigation of the Synovial Liquid by X-ray Scattering Method

Helmholtz-Zentrum Geesthacht

Zentrum für Material- und Küstenforschung

