

Your Vision, Our Future

Prototyping of a human bladder model using SLS and mold casting for in vitro simulation of the transurethral resection of the prostate

T. Dorbandt¹, C. Knopf², S. Klein¹ and C. Damiani^{1*}

¹ Medical Sensors and Devices Laboratory, Lübeck University of Applied Sciences (THL), Lübeck, Germany ² Olympus Winter & Ibe GmbH, Hamburg, Germany * Corresponding author christian.damiani@th-luebeck.de

Introduction

During transurethral resection of the prostate (TURP), the temperatures and pressure in the surrounding tissue and in the bladder increase.

Materials and Methods

- Considering the thermal and geometric properties of a human bladder, a spherical silicone rubber model with a wall thickness of 3.5 mm and an initial volume of 250 ml was chosen.
- For better understanding of the thermomechanical effects during TURP, an *in-vitro* model has been built at the TH-Lübeck in cooperation with Olympus Winter & Ibe GmbH.
- To improve the model, an elastic and transparent bladder with thermal and mechanical properties similar to those of real tissue is needed.
- In this work, mechanical computer simulations were used to select a suitable material for the new bladder, and a prototype has been build using Selective Laser Sintering and mold casting of silicone.

Properties of Human Bladder

- The pressure of the irrigating fluid in the bladder (saline solution) can reach 60-70 mbar, leading to typical bladder volumes of approx. 500 ml and quasi-spherical shapes [1].
- Average thermal conductivity of bladder wall: 0.522 W/m*K [2], wall thickness in men with benign prostatic hyperplasia: aprox. 3.5 mm [3]

- The mechanical properties of seven Silicone Rubbers with Shore A hardness from 0 to 45 were tested according to DIN 53504.
- Mechanical FEM Simulations using a linear elastic model were use to identify a suitable silicone type for the model (Zhermack ZA8).
- The CAD model of the bladder was then used to create a 3-part casting mold for a single hemisphere.
- The mold was manufactured by SLS printing of PA12 followed by grinding and polishing of the surfaces.
- Two identical silicone hemispheres were casted and bonded together. (See Fig.2)

Fig. 2 – Silicone Bladder Model.

The compliance of the model was measured

Results

- The proposed method successfully produced an elastic urinary bladder made of silicone.

Materials and Methods

The complete TURP simulation setup is shown in Fig. 1. lacksquare

- Fig. 3 shows the pressure-volume curves of the actual model, compared to those of the FEM-simulations and physiological values from the literature [4,5].
- In the range of pressures relevant for TURP (30 mBar to 70 mBar), the largest discrepancy between simulated and measured volumes is 15 % at 40 cmH20, which is smaller than the variability observed in physiological data.

Fig. 1 – *in-Vitro* model for TURP simulation

Fig. 3 Urinary bladder volume as a function of pressure. Simulation / Measurement (Zhermack ZA8) and Literature [5,6]

References

[1] J. Braun, Endoskopische Resektionsinstrumente und Operationstechniken, in Endoskopische Urologie. Springer, Berlin, Heidelberg, 2018.

[2] Mcintosh, Robert L., et al. "A comprehensive tissue properties database provided for the thermal assessment of a human at rest." Biophysical Reviews and Letters 5.03, 2010, 129-151. O. W. Hakenberg et al., Neurourology and Urodynamics: Official Journal of the International Continence Society, 2000, 19. Jg., Nr. 5, S. 585-593. [3]

[4] J. J. Wyndaele et al., Bladder compliance what does it represent: can we measure it, and is it clinically relevant?, Neurourology and urodynamics, 2011, 30. Jg., Nr. 5, S. 714-722.

M. Lng Malbrain, D. H. Deeren, Effect of bladder volume on measured intravesical pressure: a prospective cohort study, Critical care, 2006, 10. Jg., Nr. 4, S. R98.

Corresponding author Dr. Christian Damiani. Lübeck University of Applied Sciences (THL) Medical Sensors and Devices Laboratory Mönkhofer Weg 239, 23562 Lübeck, Germany Christian.Damiani@th-luebeck.de

Acknowledgement We thank Dr. Hanke and Olympus Winter & Ibe for their support for this project.