

Adaptable Magnetic Shape Memory Alloy Pump for Lab-on-Chip Applications

Tim Polley

HNP Mikrosysteme GmbH • Bleicherufer 25 • 19053 Schwerin • T +49 385 52190-300 • info@hnp-mikrosysteme.de • www.hnp-mikrosysteme.de

HNP Mikrosysteme GmbH 2023

Products

- Micro annular gear pumps
- Industrial microfluidics
- Dispensing technology
- Systemized solutions

Company

- Start 1998 in Parchim
- Turnover 18 Mio, EUR in 2022
- Employees 92

HNP Mikrosysteme GmbH

Bleicherufer 25 19053 Schwerin (Germany)

phone +49 385 52190-300 fax +49 385 52190-333 e-mail info@hnp-mikrosysteme.de URL http://www.hnp-mikrosysteme.de

Company

Challenges of microfluidic

- efficient micro fluidic handling
- accuracy and reliability
- precise and continuous volume
 flow in µl/min range
- low costs and high quantities
- interaction of complex materials, such as plastics, adhesives, and other materials affects functionality of microfluidic systems

Adaptable Magnetic Shape Memory Alloy Pump for Lab-on-Chip Applications

Operating principle – linear peristaltic volume flow magnetic shape memory (msm) pump

magnetic shape memory pump

Demonstration travelling wave

Adaptable Magnetic Shape Memory Alloy Pump for Lab-on-Chip Applications

5

Material - NiMnGa

magnetic shape memory alloy

- Magnetically actuated single-crystal metal alloy of nickel, manganese and gallium
- Folding of tetragonal martensitic structure causes volume-constant **strain** in the longitudinal direction while tapering in the transverse direction
- Maximum strain 6 %
- Perpendicular magnetic field strains the element, parallel magnetic field contracts the element

Source:	ETO	Magnet

Alloy	Ni ₂ MnGa
Temperature limits	-40 to +60°C
Strain	6 % at 2 N/mm ²
Lifetime	500 million load cycles
Frequency	1 kHz

From functional sample to prototype

- Completed research project
- Proof-of-Concept
- Functional prototypes

msm-130E msm-130C

Adaptable Magnetic Shape Memory Alloy Pump for Lab-on-Chip Applications

7

msm-pump characteristics

HNP M

Characteristics

- Flow rate 10 nl/min to 2 ml/min
- Internal volume 8,5 μl
- Differential pressure **500 mbar** (5 bar expected by simulation)
- Lifetime msm-element up to 2,5 a

130E

msm-130E

Advantages

- Minimum circulation volume
- Liquid-separated fluid delivery
- Combined pump and valve function
- Low-cost pump (positive displacement principle)
- Self-priming and bidirectional volume flow
- Separable pump and drive unit

msm-130C

- Universal pump with magnetic shape memory (msm) element
- Separable pump and drive unit
- Disposable pump head with fluid cover, circumferential sealing ring and foil for media separation
- Reusable drive unit with msm-element, elastomeric preloading element and rotating magnet

Adaptable Magnetic Shape Memory Alloy Pump for Lab-on-Chip Applications

9

Pump design »Lab-on-chip msm-pump«

Design and specification msm-130C

- Separable fluidic chip and drive unit
- Disposable fluidic chip with foil-based sealing structure for media separation
- Reusable drive and clamping unit for the fluidic chip with msm-element, elastomeric preloading element and rotating magnet

HNPM

Requirements

- Active area on the chip requires an elastic membrane
- Elastic membrane is able to follow the moving cavity
- Adhesive layer between msm-element and elastic membrane

Advantages

- Interface between msm-element and microfluidic chip
- No fluid connections close setup and minimum circulation volume
- Easy handling and fast chip exchange

Adaptable Magnetic Shape Memory Alloy Pump for Lab-on-Chip Applications

11

Applications

magnetic shape memory pump

msm-130E

msm-130C

Infusion pump

Insulin pump

Lab-on-chip pump

Source: Fraunhofer IW:

Characteristics

Flow rate	max. 2500 μ l/ min	0,200 μ l/ min	dispense volume: 0,5 µl	≤ 100 µl/min
Differential pressure	100 – 1000 mbar	100 – 1000 mbar		≤ 350 mbar
Lifetime msm- element (related to flow rate)	500 million load cycles (867 h)	500 million load cylces (10.833 h / 1,24 a)	500 million load cycles (742 a at 480 dosages per day)	500 million load cycles (21.667 h / 2,48 a)

Project status

magnetic shape memory pump technology

Phase 1

- Proof-of-concept
- prototypes msm-130C and msm-130E
- Patent applications HNPM

Phase 2

- application-related further development
 - Lab-on-chip pump
 - Infusion pump
 - Insulin pump
- Deepen technology maturity

Phase 3

Launch

Adaptable Magnetic Shape Memory Alloy Pump for Lab-on-Chip Applications

13

Thank you for your attention

HNP Mikrosysteme GmbH Bleicherufer 25 19053 Schwerin (Germany)

www.hnp-mikrosysteme.de

Tim Polley

tim.polley@hnp-mikrosysteme.de +49 385 52190 367