TH Lübeck Logo
DeutschEnglish
  • Latest news
  • Expertises
  • Publications
  • Theses
  • Team
  • Career
News
  • News
  • Dates

Dates

The CoSA seminar will take place:

on the 4th Monday of the month, 11:45 a.m.
Location (presence): Seminar room 18-2.13 of the Lübeck University of Technology
Location (Online): BBB Greenlight: CoSA-Seminar

If you would like to present an exciting topic, please feel free to contact Fabian John.


81st CoSA-Seminar on September, 26th

09/26/2022

The 81st CoSA seminar will be held on September, 26th 2022 at 11:45am hybrid.

Presence: Room 17-01.03

Web Conference: CoSA - Seminar will take place. The web conference will be available to attendees starting at approximately 11:30am.

 

The CoSA seminar will be held on September, 26th 2022 at 11:45am hybrid.

Presence: Room 17-01.03
Virtual:CoSA - Seminar (The web conference will be unlocked for attendees at approximately 11:30am).

We have planned the following presentations:

  • Sebastian Hauschild: Comparison of the latency and energy demand of Convolutional Neural Networks on IOT-Systems at the EDGE in wireless distributed environments (20 Minuten)
  • Sven Ole Schmidt: Evaluation of an Electrical Impedance Tomography Model for Underwater Object Detection (10 Minuten)
  • Fabian John: Multisensor Platform for Underwater Object Detection and Localization Applications (10 Minuten)

Presentations will last approximately 20 minutes followed by 10 minutes of discussion. We look forward to a lively and active participation.

The seminars can also be found at https://www.th-luebeck.de/cosa/. If you would like to offer a talk as well, please feel free to contact us (fabian.john(at)th-luebeck.de).

Sebastian Hauschild: Comparison of the latency and energy demand of Convolutional Neural Networks on IOT-Systems at the EDGE in wireless distributed environments (20 Minuten)
The increase in computing power and integration of specialized hardware for Artificial Intelligence (AI) acceleration like Tensor Processing Units (TPU) enable complex machine learning at edge devices in the Internet of Things (IoT).However, wireless portable systems are limited in computing power and battery lifetime. To increase the battery lifetime of edge devices and accelerate inference of IoT systems, many developments focus on combining or outsourcing AI algorithms to a cloud via wireless links e.g. wireless LAN IEEE 802.11ac or mobile network 4G/5G. Due to limitations of restricted wireless transmissions in rural areas mainly below 50~MBit/s, resulting longer transfer times can significantly affect inference latency and energy consumption from the perspective of the IoT edge device and deteriorate the response time of the application. In this CoSA Seminar, we provide a prototype setup for image processing via Convolutional Neural Networks (CNN) and investigate inference latency and energy consumption of an IoT edge device with a varying wireless link.

Sven Ole Schmidt: Evaluation of an Electrical Impedance Tomography Model for Underwater Object Detection (10 Minuten)
Underwater detection and localization measurement systems gained more importance in recent years. E.g., partly buried objects like high-voltage power cables must be identified and localized reliably. The concept of Electrical Impedance Tomography (EIT) focuses on the current flow between sets of two source electrodes. Changes in the transmission medium’s conductivity based on inhomogeneous objects lead to impedance variances that influence the current flow and therefore the measured electric potentials. By activating multiple sets of source electrodes iteratively, an characterization of the environment in a dedicated observation area is created. Multiphysics simulations are able to model these potential measurements. But the quality of the model is still an open question. In this work, we model a 3- dimensional EIT array of 20 electrodes overall, divided in distinct sets of ten source and measurement electrodes each. We derive the theoretical background and simulate the current flow, which is analyzed to determine the resulting electric potential at the measurement electrodes without and with a copper cylinder in the observation area. The cylinder is able to influence the simulation results and leads to significant object position indications based on the changes of the measured potentials. Also, the model depicts the increasing distance between cylinder and EIT array correctly, since the influence on the potential measurements is decreasing.

Fabian John: Multisensor Platform for Underwater Object Detection and Localization Applications (10 Minuten)

Reliable object detection and localization in various underwater applications is still challenging. Existing sensors are limited to particular applications and/or environmental boundaries. We present an architecture with a uniform communication protocol for a multi-sensor platform that enables a robust integration of different sensor systems. Further, we propose an extensible modular multi-sensor platform prototype to detect and localize objects with different properties in all environments. Our prototype combines magnetic, acoustic, and electrical sensors for object detection and localization. The functional prototype is ready for first measurements outside the laboratory environment.


Informationen

  • Anfahrt
  • Impressum
  • Datenschutz

Postadresse

Technische Hochschule Lübeck
Kompetenzzentrum CoSA
Fachbereich Elektrotechnik & Informatik
Mönkhofer Weg 239
23562 Lübeck

 

 

Besucheradresse

Kompetenzzentrum CoSA
Kommunikation - Systeme - Anwendungen
2. OG des Gebäudes 18
Bessemer Straße 3
23562 Lübeck

Telefon: +49 (0) 451 300-5609
cosa-projektkoordination(at)th-luebeck.de


© 2025 cosa | Gestaltung und Umsetzung: PARROT MEDIA Werbeagentur Lübeck
Cookie Settings
X
Cookie Settings

We use cookies on our website. Some of them are technically necessary, while others help us to improve this website or provide additional functionality.

Allow all and confirm

Only accept necessary cookies

Individual Cookie Settings

Privacy Notes Imprint

X
Privacy settings

Here you will find an overview of all cookies used. You can give your consent to entire categories or have further information displayed and thus select only certain cookies.

Required Cookies

These cookies enable basic functions and are necessary for the proper functioning of the website.

Show Cookie Informationen

Hide Cookie Information

Cookie Management

Saves your consent to using cookies and stores the chosen tracking optin settings.

Provider:th-luebeck.de
Cookiename:waconcookiemanagement
Runtime:1 year

FE user

This cookie is a standard session cookie from TYPO3. It stores the session ID in case of a user login. In this way, the logged-in user can be recognised and access to protected areas is granted.

Provider:th-luebeck.de
Cookiename:fe_typo_user
Runtime:Session
Cookies for Statistics

Statistics Cookies collect information anonymously. This information helps us to understand how our visitors use our website.

Show Cookie Informationen

Hide Cookie Information

Matomo Analytics

This cookie is installed by Matomo Analytics. The cookie is used to store information about how visitors use a website and to help us compile an analysis report on how the website is performing. The information collected includes the number of visitors, the source from which it originates, and the pages in anonymous form.

Provider:th-luebeck.de
Cookiename:_pk_id, _pk_ses
Runtime:_pk_id (13 month), _pk_ses (30 minutes)
Cookies for external Content

Content from video platforms and social media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Show Cookie Informationen

Hide Cookie Information

OpenStreetMap

In order for the maps of OpenStreetMap to be displayed on a website, the user's IP address is saved on an OpenStreetMap server and a cookie is set.

Provider:openstreetmap.org

YouTube Videos

A direct connection to YouTube’s servers will not be established until you have activated videos autonomously at your end (i.e. given your consent pursuant to Art. 6 Sect. 1 lit. a GDPR). Once you have activated the service, YouTube will store your IP address. By loading the video, you agree to Google's privacy policy.

Provider:YouTube / Google LLC
Privacy source url:https://policies.google.com/privacy?hl=en

Google Maps

A direct connection to Google’s servers will not be established until you have activated Google Maps autonomously at your end (i.e. given your consent pursuant to Art. 6 Sect. 1 lit. a GDPR). Once you have activated the service, Google Maps will store your IP address. By loading the map, you agree to Google's privacy policy.

Provider:Google LLC
Privacy source url:https://policies.google.com/privacy?hl=en

SoundCloud

A direct connection to SoundCloud’s servers will not be established until you have activated items autonomously at your end (i.e. given your consent pursuant to Art. 6 Sect. 1 lit. a GDPR). Once you have activated the service, SoundCloud will store your IP address. By loading, you agree to SoundCloud's privacy policy.

Provider:SoundCloud Limited
Privacy source url:https://soundcloud.com/pages/privacy

Google Calendar

A direct connection to Google's servers is only established when you activate Google Calendar yourself (consent according to Art. 6 para. 1 lit. a DSGVO). After activation, Google Calendar will store your IP address. By loading the calendar, you accept Google's privacy policy.

Provider:Google LLC
Privacy source url:https://policies.google.com/privacy?hl=en
Host:google.com

Public tenders of the TH

A direct connection to the servers of "Deutsches Ausschreibungsblatt" is only established when you activate the external content yourself (consent according to Art. 6 para. 1 lit. a DSGVO). After activation, these servers will store your IP address. By loading the external content, you accept the provider's data protection declaration.

Provider:deutsches-ausschreibungsblatt.de
Privacy source url:https://www.deutsches-ausschreibungsblatt.de/datenschutz
Host:https://www.deutsches-ausschreibungsblatt.de/

BITE applicant management

A direct connection to BITE servers is only established when you activate the external content yourself (consent according to Art. 6 para. 1 lit. a DSGVO). After activation, these servers will store your IP address. By loading the external content, you accept the provider's data protection declaration.

Provider:b-ite.de
Privacy source url:https://www.b-ite.de/legal-notice.html

Podigee Podcast-Hosting

A direct connection to Podigee servers is only established when you activate the external content yourself (consent according to Art. 6 para. 1 lit. a DSGVO). After activation, these servers will store your IP address. By loading the external content, you accept the provider's data protection declaration.

Provider:Podigee GmbH
Privacy source url:https://www.podigee.com/en/about/privacy
Host:https://www.podigee.com/

360° Tour

A direct connection to 3D Vista servers is only established when you activate the external content yourself (consent according to Art. 6 para. 1 lit. a DSGVO). After activation, these servers will store your IP address. By loading the external content, you accept the provider's data protection declaration.

Provider:3D Vista
Privacy source url:https://www.3dvista.com/en/privacy_policy/
Host:https://www.3dvista.com/

rapidmail Newsletter-Tool

A direct connection to rapidmail servers is only established when you activate the external content yourself (consent according to Art. 6 para. 1 lit. a DSGVO). After activation, these servers will store your IP address. By loading the external content, you accept the provider's data protection declaration.

Provider:rapidmail
Privacy source url:https://www.rapidmail.de/datenschutz
Host:https://www.rapidmail.de/

Userlike

A direct connection to the servers of Userlike is only established when you activate the external content yourself (consent according to Art. 6 para. 1 lit. a DSGVO). After activation, these servers will store your IP address. By loading the external content, you accept the provider's data protection declaration.

Provider:Userlike
Privacy source url:https://www.userlike.com/en/terms#privacy-policy
Host:https://www.userlike.com/

Save

Only accept necessary cookies Back

Privacy Notes Imprint