TH Lübeck Logo
DeutschEnglish
  • Latest news
  • Expertises
  • Publications
  • Theses
  • Team
  • Career
MOIN

<< back to expertise

MOIN

Minimum Location Infrastructure

Duration:01.09.2018 - 30.06.2021
Project Leader:Prof. Dr.-Ing. Horst Hellbrück
Staff:Sven Ole Schmidt, M.Sc.

Background

A producer stores his semi-finished and pre-products in a hall with numerous narrow aisles in between. Inside the production hall, there are also completely enclosed rooms (sanding, welding and painting booths). From semi-finished and pre-products, the final product is manufactured in several operations. In addition to retrieving the semi-finished and precursors, the entire production process should be automatically monitored, e.g. Determine buffer times. In order to perform an automatic tracking of the production process, the position of the semi-finished and pre-products, as well as the production order, must be retrievable at any time.
With traditional methods, such as barcode or passive RFID, complete tracking is only possible to a limited extent. In addition, these methods cause considerable manual overhead (permanent simultaneous scanning of object and position) and pose a high potential for errors by forgetting a scan. The object can no longer be located in this case.

Existing positioning systems based on radio runtime measurement require a large number of reference points. Due to the hall topology described, the corresponding infrastructure for radiolocation would have to be set up in each individual aisle in this case. A location within the enclosed spaces would be limited or not possible by shielding.

Objective

Fig.1: Minimization of hardware in an indoor localization system.

The aim of this project is the redevelopment of a localization system, which reduces the contained infrastructure to a minimum. For this purpose, the multipath propagation, which is caused by the wireless transmission, is used constructively to initialize virtual anchors from a given anchor, while taking into account the hall topology. Then, these are used analogous to real anchors, which reduces the hardware requirements.

 

 

In the subproject Modeling and Algorithms (ModAl) of this cooperation project, the University of Applied Sciences Lübeck is developing a simulation and planning tool that can analyze a given spatial geometry and perfectly position the localization anchor on the basis of algorithmics. In consideration of this planning, we also develop an algorithmic position analysis of the tags.

Approach

Fig.2: Measurement of a channel impulse response.

An important tool for tag localization is the channel impulse response. This describes the multipath propagation through a diagram which maps the received signal in the form of the received signal copies with their individual power and transmission duration.

By correlating with the different paths of multipath propagation, a clear inference of the tag position can be drawn from the received channel impulse response.

Publications

Evaluation and Error Correction of Position Tracking Systems of Autonomous Vehicles for Indoor Localization
Robin Angelstein and Sven Ole Schmidt and Fabian John and Horst Hellbrück
Student Conference on Medical Engineering Science, 2022.
Modeling the Interference of Ultra-Wideband Signals in Multipath Propagation Channels
Kniesel, Jan-Philip and Sven Ole Schmidt and Hellbrück, Horst
2021.
Modeling the Path Losses of Ultra-Wideband Signals in Multipath Propagation Channels
Schramm, Sascha and Sven Ole Schmidt and Hellbrück, Horst
2021.
Modeling UWB Multipath Propagation considering Material-Dependent Reflection Effects
Winkel, Torben and Sven Ole Schmidt and Hellbrück, Horst
2021.
Comparison of I/Q- and Magnitude-based UWB Channel Impulse Responses for Device-free Localization
Marco Cimdins and Sven Ole Schmidt and Horst Hellbrück
International Conference on Localization and GNSS, 2021.
MAMPI – Multipath-assisted Device-free Localization with Magnitude and Phase Information
Marco Cimdins and Sven Ole Schmidt and Horst Hellbrück
International Conference on Localization and GNSS, 2020.
MAMPI-UWB—Multipath-Assisted Device-Free Localization with Magnitude and Phase Information with UWB Transceivers
Marco Cimdins and Sven Ole Schmidt and Horst Hellbrück
Sensors 20, 24, 7090, 2020.
On the Effective Length of Channel Impulse Responses in UWB Single Anchor Localization
Sven Ole Schmidt and Marco Cimdins and Horst Hellbrück
International Conference on Localization and GNSS, 2019.
Improvements to UWB Channel Impulse Response Measurements for Indoor Localization
Matthews, B. and Cimdins, M. and Hellbrück, H.
Student Conference on Medical Engineering Science, 2019.
Modeling the Magnitude and Phase of Multipath UWB Signals for the Use in Passive Localization
Marco Cimdins and Sven Ole Schmidt and Horst Hellbrück
16th Workshop on Positioning, Navigation and Communication, 2019.
Understanding and Prediction of Ultra-Wide Band Channel Impulse Response Measurements
Benjamin Matthews and Sven Ole Schmidt and Horst Hellbrück
Proceedings of the 4th KuVS/GI Expert Talk on Localization, 21--23, 2019.

Project partner

 

Founded by

Solcon Systemtechnik GmbH   Bundesministerium für Wirtschaft und Energie
Förderkennzeichen: ZF4186108BZ8
 
     

 

Informationen

  • Anfahrt
  • Impressum
  • Datenschutz

Postadresse

Technische Hochschule Lübeck
Kompetenzzentrum CoSA
Fachbereich Elektrotechnik & Informatik
Mönkhofer Weg 239
23562 Lübeck

 

 

Besucheradresse

Kompetenzzentrum CoSA
Kommunikation - Systeme - Anwendungen
2. OG des Gebäudes 18
Bessemer Straße 3
23562 Lübeck

Telefon: +49 (0) 451 300-5609
cosa-projektkoordination(at)th-luebeck.de


© 2025 cosa | Gestaltung und Umsetzung: PARROT MEDIA Werbeagentur Lübeck
Cookie Settings
X
Cookie Settings

We use cookies on our website. Some of them are technically necessary, while others help us to improve this website or provide additional functionality.

Allow all and confirm

Only accept necessary cookies

Individual Cookie Settings

Privacy Notes Imprint

X
Privacy settings

Here you will find an overview of all cookies used. You can give your consent to entire categories or have further information displayed and thus select only certain cookies.

Required Cookies

These cookies enable basic functions and are necessary for the proper functioning of the website.

Show Cookie Informationen

Hide Cookie Information

Cookie Management

Saves your consent to using cookies and stores the chosen tracking optin settings.

Provider:th-luebeck.de
Cookiename:waconcookiemanagement
Runtime:1 year

FE user

This cookie is a standard session cookie from TYPO3. It stores the session ID in case of a user login. In this way, the logged-in user can be recognised and access to protected areas is granted.

Provider:th-luebeck.de
Cookiename:fe_typo_user
Runtime:Session
Cookies for Statistics

Statistics Cookies collect information anonymously. This information helps us to understand how our visitors use our website.

Show Cookie Informationen

Hide Cookie Information

Matomo Analytics

This cookie is installed by Matomo Analytics. The cookie is used to store information about how visitors use a website and to help us compile an analysis report on how the website is performing. The information collected includes the number of visitors, the source from which it originates, and the pages in anonymous form.

Provider:th-luebeck.de
Cookiename:_pk_id, _pk_ses
Runtime:_pk_id (13 month), _pk_ses (30 minutes)
Cookies for external Content

Content from video platforms and social media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Show Cookie Informationen

Hide Cookie Information

OpenStreetMap

In order for the maps of OpenStreetMap to be displayed on a website, the user's IP address is saved on an OpenStreetMap server and a cookie is set.

Provider:openstreetmap.org

YouTube Videos

A direct connection to YouTube’s servers will not be established until you have activated videos autonomously at your end (i.e. given your consent pursuant to Art. 6 Sect. 1 lit. a GDPR). Once you have activated the service, YouTube will store your IP address. By loading the video, you agree to Google's privacy policy.

Provider:YouTube / Google LLC
Privacy source url:https://policies.google.com/privacy?hl=en

Google Maps

A direct connection to Google’s servers will not be established until you have activated Google Maps autonomously at your end (i.e. given your consent pursuant to Art. 6 Sect. 1 lit. a GDPR). Once you have activated the service, Google Maps will store your IP address. By loading the map, you agree to Google's privacy policy.

Provider:Google LLC
Privacy source url:https://policies.google.com/privacy?hl=en

SoundCloud

A direct connection to SoundCloud’s servers will not be established until you have activated items autonomously at your end (i.e. given your consent pursuant to Art. 6 Sect. 1 lit. a GDPR). Once you have activated the service, SoundCloud will store your IP address. By loading, you agree to SoundCloud's privacy policy.

Provider:SoundCloud Limited
Privacy source url:https://soundcloud.com/pages/privacy

Google Calendar

A direct connection to Google's servers is only established when you activate Google Calendar yourself (consent according to Art. 6 para. 1 lit. a DSGVO). After activation, Google Calendar will store your IP address. By loading the calendar, you accept Google's privacy policy.

Provider:Google LLC
Privacy source url:https://policies.google.com/privacy?hl=en
Host:google.com

Public tenders of the TH

A direct connection to the servers of "Deutsches Ausschreibungsblatt" is only established when you activate the external content yourself (consent according to Art. 6 para. 1 lit. a DSGVO). After activation, these servers will store your IP address. By loading the external content, you accept the provider's data protection declaration.

Provider:deutsches-ausschreibungsblatt.de
Privacy source url:https://www.deutsches-ausschreibungsblatt.de/datenschutz
Host:https://www.deutsches-ausschreibungsblatt.de/

BITE applicant management

A direct connection to BITE servers is only established when you activate the external content yourself (consent according to Art. 6 para. 1 lit. a DSGVO). After activation, these servers will store your IP address. By loading the external content, you accept the provider's data protection declaration.

Provider:b-ite.de
Privacy source url:https://www.b-ite.de/legal-notice.html

Podigee Podcast-Hosting

A direct connection to Podigee servers is only established when you activate the external content yourself (consent according to Art. 6 para. 1 lit. a DSGVO). After activation, these servers will store your IP address. By loading the external content, you accept the provider's data protection declaration.

Provider:Podigee GmbH
Privacy source url:https://www.podigee.com/en/about/privacy
Host:https://www.podigee.com/

360° Tour

A direct connection to 3D Vista servers is only established when you activate the external content yourself (consent according to Art. 6 para. 1 lit. a DSGVO). After activation, these servers will store your IP address. By loading the external content, you accept the provider's data protection declaration.

Provider:3D Vista
Privacy source url:https://www.3dvista.com/en/privacy_policy/
Host:https://www.3dvista.com/

rapidmail Newsletter-Tool

A direct connection to rapidmail servers is only established when you activate the external content yourself (consent according to Art. 6 para. 1 lit. a DSGVO). After activation, these servers will store your IP address. By loading the external content, you accept the provider's data protection declaration.

Provider:rapidmail
Privacy source url:https://www.rapidmail.de/datenschutz
Host:https://www.rapidmail.de/

Userlike

A direct connection to the servers of Userlike is only established when you activate the external content yourself (consent according to Art. 6 para. 1 lit. a DSGVO). After activation, these servers will store your IP address. By loading the external content, you accept the provider's data protection declaration.

Provider:Userlike
Privacy source url:https://www.userlike.com/en/terms#privacy-policy
Host:https://www.userlike.com/

Save

Only accept necessary cookies Back

Privacy Notes Imprint